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Abstract. For each constant k, we present a linear time algorithm that, given
a planar graph G, either finds a minimum odd cycle vertex transversal in G or
guarantees that there is no transversal of size at most k.

1. Introduction

An odd cycle transversal (or cover) is a subset of the vertices of a graph G
that hits all the odd cycles in G. Clearly the deletion of such a vertex set leaves a
bipartite graph. Thus the problem of finding an odd cycle transversal of minimum
cardinality is just the classical graph bipartization problem. Whilst this problem is
NP-hard, it was recently shown [10] that an O(n2) time algorithm does exist when
the size of an optimal solution is constant. This result is of particular interest
given that in many practical examples, for example in computational biology [11],
the transversals are typically small.

In this paper, we consider the restriction of the graph bipartization problem to
planar graphs. As the vertex cover problem in planar graphs can be reduced to
it, the restricted problem is still NP-hard. This and other related vertex and edge
deletion problems in planar graphs have been extensively studied both structurally
and algorithmically (see, for example, [8], [3] and [6]). Here we give a linear
time algorithm for instances with constant sized optimal solutions. The graph
properties of consequence in this problem are very different for planar graphs
than for general graphs. By exploiting these properties, we develop an algorithm
quite unlike that of [10].

We consider an embedding of the planar graph G. The parity of a face of G
is defined as the parity of the edge set of its boundary, counting bridges twice.
The crucial observation is that the parity of a cycle in G is equal mod 2 to the
sum of the parities of the faces within it. In particular, it follows from the crucial
observation that G is bipartite if and only if all its faces are even.

When a vertex v is deleted from G, all the faces incident to v are merged together
in a new face F . The other faces are unchanged. We denote the new face by a
capital letter to stress the fact that it determines a set of faces of G, namely, the
faces of G included in it. Note that the parity of the new face F equals the sum
mod 2 of the parities of the faces of G it contains. Let now W denote any set of
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vertices in G. By deleting from G the vertices in W one after the other in some
order, we see that each face of G − W corresponds to a set of face of G. This
set is a singleton if the corresponding face is a face of G that survived in G − W .
Furthermore, a face of G−W is odd precisely if it contains an odd number of odd
faces of G. Because a planar graph is bipartite if and only if all its faces are even,
we obtain our

Key Fact: A set W of vertices is an odd cycle transversal of G precisely if every
face of G − W contains an even number of odd faces of G. �

We remind readers that for a given embedding of G, the face-vertex incidence
graph of G is the bipartite graph G+ on the vertices and faces of G whose edges
are the pairs fv, where f is a face of G and v is a vertex of G incident to f . In
the next paragraph, we state a useful reformulation of the Key Fact in terms of
T -joins in the face-vertex incidence graph. For the graph bipartization problem
using edge deletions, Hadlock [4] considered a similar relationship between odd
cycle (edge) transversals and T -joins in the dual graph. He used this to give a
polynomial time algorithm for the maximum cut problem in planar graphs.

Consider any graph H and set of vertices T in H. A T -join in H is a set
of edges J such that T equals the set of odd degree vertices in the subgraph of
H determined by J . There exists a T -join in H if and only if each connected
component of H contains an even number of vertices of T . In particular, if H
has a T -join then |T | is even. Now let T be the set of odd faces of the planar
graph G. So T is an even set of vertices in the face-vertex incidence graph G+.
Letting F (G) denote the set of faces of G, the correspondence between odd cycle
transversals and T -joins is as follows.

Lemma 1. A subset W of V (G) is an odd cycle transversal of G if and only if the
subgraph of G+ induced by W ∪ F (G) contains a T -join, that is, every connected
component of the subgraph has an even number of vertices of T .

Proof. The lemma is equivalent to the Key Fact because deleting a vertex v from G
corresponds to contracting all the edges incident to v in the face-vertex incidence
graph G+. �

The above lemma is useful because it enables us to visualize odd cycle transver-
sals of G as forests in the face-vertex incidence graph G+ such that each tree of the
forest contains an even number of vertices of T . Indeed, consider an inclusionwise
minimal odd cycle transversal W of G. By Lemma 1, i.e., by the Key Fact, there is
a T -join J in G+ covering each vertex of W and no vertex of G−W . Without loss
of generality, we can assume that J is inclusionwise minimal. Then J is a forest
and every leaf of J is in T . Note that some vertices of T can be internal nodes
of J . For every vertex v of W , there two internally disjoint paths in J between v
and T . So, letting dmin(v) be the minimum length of a path from v to an odd face
in the face-vertex incidence graph, we see that the Key Fact implies:
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Corollary 2. No vertex v of G is in an inclusionwise minimal odd cycle transver-
sal of size less than dmin(v). �

Thus, letting G′ be the subgraph of G induced by {v|dmin(v) > k}, we see that
if G has an odd cycle transversal of size at most k then G′ must be bipartite. That
is, V (G) − V (G′) is an odd cycle transversal. So applying the Key Fact to the
embedding of G′ which appears as a sub-embedding of our embedding of G, we
obtain:

Corollary 3. If G has an odd cycle transversal of size at most k then every face
of G′ contains an even number of odd faces of G. �

We note further that the boundary, bd(F ), of every face F of G′ is disjoint from
the boundaries of the odd faces of G within it by the definition of G′ (except for
the trivial case k = 0). Thus we have:

Observation 4. If G has an odd cycle transversal of size at most k then there
are at most k faces of G′ which contain an odd face of G. �

For some r ≤ k, we let {F1, ..., Fr} be the set of faces of G′ containing an odd
face of G and let Gi = G∩ (Fi ∪ bd(Fi)). Applying Corollary 2 again, it is easy to
show:

Corollary 5. If G has an odd cycle transversal of order at most k then W is a
minimum odd cycle transversal of G precisely if Wi = W ∩ Gi is a minimum odd
cycle transversal of Gi for every i between 1 and r.

Proof. Consider an odd cycle transversal W of G of order at most k. By Corollary
2, Wi is disjoint from the boundary of Fi, and each face of G − W which is not a
face of G′ is a face of Gi −Wi for some i. Thus, applying the Key Fact to G−W
and Gi −Wi for each i we see that W is an odd cycle transversal of G if and only
if Wi is an odd cycle transversal of Gi for each i. Since Wi is disjoint from the
boundary of Fi, the Wi’s are disjoint and the result follows. �

It is easy to prove that the face-vertex incidence graph of each Gi has radius
O(k2). Hence each Gi has tree-width (defined below) which is O(k2). We show in
Section 3 that we can find minimum odd cycle transversals in linear time in graphs
with bounded tree-width. So if we could find all the Gi’s in linear time then we
could compute a minimum odd cycle transversal for each Gi in linear time and by
taking their union, find a minimum odd cycle transversal of G (or determine that
G has no odd cycle transversal of order at most k). This is close to what we do.
There is one slight technical hitch, we actually need to consider a subgraph G′′ of
G′. We give details in the next section.

We close this introductory section with some more remarks on related work
concerning odd cycle packing and covering in planar graphs. Reed [9] showed that
the following Erdös-Pósa property holds in planar graphs: for any integer k, there
exists an f(k) such that G either has an odd cycle transversal of size at most f(k)



4 S. FIORINI, N. HARDY, B. REED, AND A. VETTA

or a packing of vertex disjoint odd cycles of size at least k+1. For the edge version
of this problem, Král and Voss [7] recently proved that the Erdös-Pósa property
holds for f(k) = 2k, which is a tight result. In contrast, it is easy to show that in
general graphs the Erdös-Pósa property does not hold.

2. The Algorithm

Our algorithm works as follows. First obtain an embedding of G in linear time
[5], and construct the face-vertex incidence graph G+. Then find a collection
F = {f1, . . . , fs} of boundary-disjoint odd faces of G which either has k + 1 faces
or is inclusion-wise maximal. This part of the algorithm can be implemented to
run in O(kn) time which is linear as k is fixed.

If s > k then return the information that G has no odd cycle transversal of
size at most k and stop. Otherwise, let Bi denote the set of faces and vertices
of G whose distance to fi in G+ is at most k + 1. Determine the sets Bi for all
i = 1, . . . , s via a breadth first search in G+. Let G′′ be the subgraph of G obtained
by deleting all the vertices of G in each Bi. We note that G′′ is a subgraph of G′

because every odd face is incident to some fi.
Determine the set F1, ..., Fr of faces of the embedding of G′′ which contain an

odd face of G. Note that r ≤ s ≤ k as each Fi contains some fj. We let Di

be the subgraph of G contained in the union of Fi and its boundary. We refer
to these graphs as discs. Now find a minimum odd cycle transversal Wi in each
disc Di. Since, as we show below, each disc has bounded tree-width, this can be
achieved in linear time using the techniques described in Section 3. Let W be
the union of W1, . . . , Wr. If W has size at most k, then W is a minimum odd
cycle transversal of G; output W . Otherwise, return the information that G has
no odd cycle transversal of size at most k. This concludes the description of the
algorithm.

Proposition 6. The algorithm finds a minimum cardinality odd cycle transversal
if G has an odd cycle transversal of size at most k or otherwise detects that no
such transversal exists.

Proof. The proof of this proposition mimics exactly the proof of Corollary 5 with
G′ replaced by G′′ and Gi replaced by Di. �

In Section 3, we will describe how to find minimum odd cycle transversals in
graphs of bounded tree-width in linear time. Since all of the steps described in this
section can be carried out in linear time, Proposition 6 tells us that we will obtain
a linear time algorithm for general planar graphs if we can show that each disc
has bounded tree-width. This, though, follows simply from the following result.

Lemma 7. ([1], for a more general result see [12, 13]) If a planar graph contains
no h × h grid minor, then its tree-width is at most 8h. �
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Because the radius of the face-vertex incidence graph of any planar graph con-
taining a h × h grid minor is at least h, the preceding lemma has the following
immediate corollary:

Corollary 8. Let G be a planar graph. If the radius of the face-vertex incidence
graph of G is less than h, then the tree-width of G is at most 8h. �

Lemma 9. The tree-width of each disc is O(k2).

Proof. By Corollary 8, it suffices to show that the radius of each disc is O(k2).
Consider any disc Di. Let I be the set of indices ` such that f` ∈ F is a face
of Di. Let H denote the graph whose vertex set is I and whose edges are the
pairs ``′ of indices such that some vertex of G in B` and some vertex of G in B`′

are both incident to some face of G. We know that H is connected and has at
most k vertices, so its radius is at most k/2. Let j be a vertex of H such that
the distance in H between j and j ′ is at most k/2. The distance in D+

i between
any f` with ` ∈ I and fj is at most the distance in H between ` and j times
2(k + 1) + 2 = 2k + 4. Moreover, for every face or vertex of Di there is an index
` ∈ I such that the distance in D+

i between the considered face or vertex and f`

is at most k + 2. So the distance in D+
i between any face or vertex of Di and fj

is at most
(k/2)(2k + 4) + k + 2 = k2 + 3k + 2.

So the radius of D+
i is indeed O(k2). �

3. Odd Cycle Transversals in Graphs of Bounded Tree-width

As we have seen, it suffices to find a linear time algorithm for graphs with
bounded tree-width. This can be done using standard techniques; we present such
an algorithm below. Our main result then follows.

We begin with the required technical definitions. A tree-decomposition of G is
a pair (T,V), where T is a tree and V = (Vt ⊆ V (G) : t ∈ V (T )) is a family of
subsets of V (G) with the following properties:

(1)
⋃

(Vt : t ∈ V (T )) = V (G).
(2) For each edge e ∈ E(G) there is a t ∈ V (T ) such that both endpoints of e

are in Vt.
(3) For t0, t1 and t2 in ∈ V (T ), if t0 is on the path of T between t1 and t2,

then Vt1 ∩ Vt2 ⊆ Vt0 .

The width of the tree-decomposition (T,V) is defined as maxt∈V (T )(|Vt| − 1). The
tree-width of a graph G is the minimum w such that G has a tree-decomposition
of width w. It is well known that there are minimum tree decompositions of G
that use at most n nodes. Moreover, we can easily convert a tree decomposition
(T,V) to another (T ′,V ′) of the same width, such that T ′ is a binary tree with at
most twice as many nodes as T . Let G be a graph with bounded tree-width ω− 1
and let (T,V) be a binary minimum tree-decomposition of G. We denote by t the
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nodes of T and by Vt the subset of V (G) assigned to t. We have that |Vt| ≤ ω for
all t ∈ T . Pick an arbitrary root node t∗ ∈ T . Then, given a node t ∈ T we let St

be the subtree of T rooted at t. From (2) we may assign to each edge e = (u, v)
of G a specific node t(e) ∈ T for which u, v ∈ Vt. Thus, for each t ∈ T there is an
associated edge set Et ⊆ E(G). Hence, we may define the graphs G(t) = (Vt, Et)
and G(St) = (

⋃
t′∈St

Vt′ ,
⋃

t′∈St
Et′).

We associate with each node t ∈ T a set At of all the ordered triplets Πt =
(Lt, Rt,Wt) where Lt, Rt and Wt form a vertex partition of Vt. Clearly |At| is at
most 3ω. Our algorithm will work up from the leaves maintaining the property
that for each partition Πt we (implicitly) store a minimum odd cycle transversal

Ŵt in G(St) that is accordant with the partition. That is, Wt ⊆ Ŵt and Lt and Rt

are on opposites sides of the bipartition in G(St)− Ŵt. If such a transversal exists

then we will set f(Πt) = |Ŵt|; otherwise if there is no such accordant transversal
then we set f(Πt) = ∞. Hence, for a leaf t ∈ T we have f(Πt) = |Wt| if Lt and
Rt both induce stable sets in Et. Otherwise f(Πt) = ∞. Now take a non-leaf
node t ∈ T with children r and s. If Lt or Rt induce an edge in Et then we
set f(Πt) = ∞. So suppose not. We say that a partition Πr = (Lr, Rr,Wr) in
Ar is consistent with a partition Πt = (Lt, Rt,Wt) in At if Wt ∩ V (Sr) ⊆ Wr,
Lt ∩ V (Sr) ⊆ Lr and Rt ∩ V (Sr) ⊆ Rr. We use the notation Πr ∼ Πt to denote
consistency. Note, by property (3), that if Πr and Πs are both consistent with Πt

then they are consistent with each other. Then set

f(Πt) = min
Πr∼Πt,Πs∼Πt

f(Πr) + f(Πs) + |Wt − (Wr ∪ Ws)| − |Wr ∩ Ws|

Note that it may still be the case that f(Πt) = ∞. We repeat this process up the
tree. Observe that, by storing pointers from a partition Πt to the partitions Π′

r

and Π′

s in its children that produced the minimum value f(Πt), we may implicitly

store the set Ŵt. We then obtain the following result.

Lemma 10. For each Πt, either f(Πt) is the size of the minimum odd cycle
transversal in G(St) accordant with the partition Πt, or f(Πt) = ∞ and no such
a transversal exists.

Proof. This is clearly true if t is a leaf. So let t ∈ T be a non-leaf with children
r and s. Take Πt and assume first that f(Πt) is finite. Next take consistent

partitions Πr and Πs with optimal transversals Ŵr and Ŵs, respectively. Then,
since Ŵr and Ŵs are accordant with Πr and Πs, by property (3) we have that

Wt − (Ŵr ∪ Ŵs) = Wt − (Wr ∪ Ws). Thus, in obtaining Ŵt we only need to add
the vertices in Wt− (Wr ∪Ws). Moreover any vertex in Wr ∩Ws is double counted
by f(Πr)+ f(Πs). Thus f(Πt) is in fact the size of a transversal in G(t) accordant
with Πt. Therefore, since we are examining all consistent pairs of partitions for
the children, it is clear that f(Πt) is the size of a minimum odd cycle transversal

Ŵt in G(St) accordant with the partition Πt. Now suppose f(Πt) = ∞ and that
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there is a transversal W for G(St) accordant with Πt. Then, for all pairs of
partitions Πr and Πs that are consistent with Πt, at least one of f(Πr) or f(Πs)
is infinite. We obtain a contradiction as the restrictions of W to G(Sr) and G(Ss)
give odd cycle transversals for these subgraphs that are accordant with Πr and
Πs, respectively. � �

It immediately follows that the minimum transversal can be found by consid-
ering the partition Πt∗ with the minimum f value. We may obtain a binary
tree-decomposition in linear time [2]. For each node in the tree we have O(3ω)
partitions. It takes O(|Et|) time to check whether Lt or Rt induce stable sets in
G(t). There are then O(9ω) possible pairs of partitions for the children. Thus
it takes O(ω9ω) time to check for consistencies and to calculate f(Πt). In total,
therefore the algorithm runs in time O(ω33ωn). Thus we have proven Theorem 11
and Corollary 12.

Theorem 11. Let G be a graph with bounded tree-width. Then there is an linear
time algorithm to find a minimum odd cycle transversal in G. �

Corollary 12. In a planar graph, for any constant k, there is an O(n) time
algorithm to find a minimum odd cycle transversal of cardinality at most k or
determine that no such transversal exists. �
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