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Abstract We study the ratio between the minimum size of an odd cycle vertex
transversal and the maximum size of a collection of vertex-disjoint odd cycles in
a planar graph. We show that this ratio is at most 10. For the corresponding edge
version of this problem, Kŕal and Voss recently proved that this ratio is at most 2;
we also give a short proof of their result.

Keywords Odd cycle transversal· Odd cycle packing· Planar graph

1 Introduction

A set of vertices of a graphG is anodd cycle (vertex) transversalif its removal
makesG bipartite. Odd cycle transversals are sometimes calledodd cycle covers.
An odd cycle (vertex) packingin G is a collection of vertex-disjoint odd cycles in
G. Let τ andν respectively denote the minimum size of an odd cycle transversal
and the maximum size of an odd cycle packing. Because every oddcycle transver-
sal has to meet every odd cycle, we haveν ≤ τ . Our main result is to show that
τ ≤ 10ν for all planar graphsG.
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For general graphsG, it is known thatτ is not bounded by any function ofν . In
other words, the family of odd cycles does not satisfy the ‘Erdös-Ṕosa property’.
Let H denote a family of graphs. We denote byτH the minimum size of a set
of verticesW such thatG−W has no subgraph isomorphic to a graph inH ,
and byνH the maximum size of a collection of vertex-disjoint subgraphs each
isomorphic to a graph inH . ThenH is said to have theErdös-Ṕosa property
if there is a functionf such thatτH ≤ f (νH ). Erdös and Ṕosa [4] showed that
the family of cycles satisfies this property. This is how the name “Erdös-Ṕosa
property” originated. The family of odd cycles does not satisfy the Erd̈os-Ṕosa
property because there are projective-planar graphs known asEscher walls[14]
for which ν = 1 andτ is arbitrarily large. In [14], Reed proved that odd cycles
satisfy the Erd̈os-Ṕosa property in graphs without an Escher wall of heighth, for
any fixedh≥ 3. Since planar graphs do not contain any Escher wall, there exists
a function f such thatτ ≤ f (ν) for all planar graphsG. However, the function
f implicit in [14] is huge. A similar type of result in this area applies to highly
connected graphsG. For instance, Reed and Rautenbach [13] proved thatτ ≤ 2ν
for 576ν-connected graphs.

The minimum odd cycle transversal (or cover) problem and maximum odd
cycle packing problem are both NP-hard, even when the input is a planar graph.
The NP-hardness of the covering problem is a direct consequence ofthe fact that
the vertex cover problem restricted to planar graphs is NP-hard [7]. It is shown
in the second author’s Master’s thesis [10] that the packing problem is NP-hard.
This is done by adapting a proof of Caprara and Rizzi [2] that finding a maximum
collection of vertex-disjoint triangles in a planar graph is NP-hard.

The NP-hardness of the odd cycle covering and packing problems motivates
the search for approximation algorithms. Aρ-approximation algorithmfor a min-
imization problem is a polynomial-time algorithm that returns a feasible solution
whose cost is at mostρ times the cost of an optimal solution. Many successful
approximation algorithms are based on linear programming. In thistype of ap-
proach, the problem is first formulated as an integer program. By dropping the
integrality constraints, a linear programming relaxation is obtained. The lower
bound given by the linear program (LP) is used to guarantee that the cost of the
solution produced by the algorithm is withinρ of the optimum. The best approxi-
mation guaranteeρ which can be obtained along these lines is theintegrality gap
of the relaxation, i.e., the maximum ratio of the optimum valueto the LP bound.
Approximation algorithms and integrality gaps for maximization problems are de-
fined similarly.

The minimum odd cycle transversal (resp. packing) problem can be formulated
as integer programs whose linear program relaxations are duals. Letting V denote
the vertex set ofG andO denote the set of odd cycles inG, these dual LPs are:

COVERING LP: min ∑
v∈V

yv

∑
v:v∈C

yv ≥ 1 ∀C∈ O

yv ≥ 0 ∀v∈V
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PACKING LP: max ∑
C∈O

xC

∑
C:v∈C

xC ≤ 1 ∀v∈V

xC ≥ 0 ∀C∈ O.

Goemans and Williamson [8] gave a constant factor approximation algorithm for
the minimum odd cycle transversal problem in planar graphs usingthe primal-
dual method (see, e.g., Vazirani [19]). In doing so they proved that the integrality
gap of the covering LP is at most9

4. They conjecture that it is actually32. Our
results show that the integrality gap of the packing LP is bounded by a constant.
In addition, our structural result generates a polynomial time 11-approximation
algorithm for the maximum odd cycle packing problem in planar graphs.

We remark that there are corresponding edge versions of these covering and
packing problems. Recently, Král and Voss [11] showed that the minimum size of
an odd cycle edge transversal in a planar graph is at most twice the maximum size
of an odd cycle edge packing. We also give a short proof of their result.

We conclude this introductory section with an overview of the paper. At the
heart of this work lies a connection between odd cycle transversals andT-joins in
a certain auxiliary graph. In particular,T will correspond to the set of odd faces
of the planar graphG. In the vertex case the auxiliary graph we need to consider
is the face-vertex incidence graphG+. Specifically, we show that minimum ver-
tex transversals correspond toT-joins inG+ covering the least number of vertices
of G. In the edge case the auxiliary graph is the dual graphG∗. Here minimum
transversals correspond toT-joins in G∗ with the least number of edges. This re-
lationship was first used by Hadlock [9] to derive a polynomial time algorithm for
the maximum cut problem in planar graphs. We present the necessary background
on T-joins andT-cuts in Section 2.1 and describe the connection between odd
cycle transversals andT-joins in Section 2.2 for the edge case and in Section 2.3
for the vertex case.

In Section 3 we present our proof that a minimum edge transversal has size
at most twice the size of a maximum odd cycle edge packing. This proof, as with
the proof of Kŕal and Voss, requires the use of the Four Colour Theorem. We
use it to show that any laminar 2-packing (defined below) ofk odd cycles inG
contains1

4k edge-disjoint odd cycles. A result by Lovász onT-joins andT-cuts
then guarantees the existence of a 2-packing whose size is twice the minimum size
of an odd cycle edge transversal. This gives the result.

To prove our main result we begin by considering three special classes of pla-
nar graphs. In Section 4.1 we consider graphs in which every pair of odd faces
intersect. In Section 4.2 we consider 4-connected graphs such that some (possibly
even) face intersects every odd face. Finally in Section 4.3 weexamine graphs in
which every pair of odd faces is ‘far’ apart. In all of these classesof graphs we
show thatτ ≤ 2ν . The proof of our main result, given in Section 5, combines the
techniques developed for these special cases. We letG be a minimum counterex-
ample to the theorem. We take a minimum collection of faces ofG, which we call
centers, such that every odd face ofG intersects some face of the collection. Then
we show thatG must be 4-connected with all its centers ‘far’ apart. Next, using the
techniques of Section 4.2 we find a ‘local’ transversal around each center. At the
same time, we find a packing of odd faces around each center. Since the centers
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are ‘far’ apart the union of these packings is also a packing. We call this union the
local packing. The results of Section 4.3 allow us to extend the ‘local’ transver-
sals to a transversal of the whole graph. Associated with this transversal we find
a different packing of odd cycles, which we call theglobal packing. The size of
the transversal we obtain is within a constant factor of the size of the largest of the
local packing and the global packing. Our main result then follows. In the last sec-
tion of the paper, Section 6, we sketch a 11-approximation algorithm for packing
odd cycles in planar graphs.

2 T-Joins and Odd Cycle Transversals

In this section we show how minimum odd cycle edge and vertex transversals of a
plane graphG relate toT-joins in the dual graph and face-vertex incidence graph
of G, respectively. First, we give some background onT-joins andT-cuts along
with two min-max results that we will need.

2.1 Background

Consider any graphH and set of verticesT in H. A T-join in H is a set of edgesJ
such thatT equals the set of odd degree vertices in the subgraph ofH determined
by J. There exists aT-join in H if and only if each connected component ofH
contains an even number of vertices ofT. In particular, ifH has aT-join then|T|
is even. AT-cut in H is a cut having an odd number of vertices ofT on each side.
In other words, whenever a set of verticesX contains an odd number of vertices of
T, the cutδ (X) = {xy∈ E(H) : x∈ X,y /∈ X} is aT-cut. EveryT-join intersects
everyT-cut. Furthermore, a set of edges intersecting everyT-cut contains aT-join.
The lengthof a T-join is the number of edges it contains. Apackingof T-cuts is
a collection of edge-disjointT-cuts. Because everyT-join intersects everyT-cut,
the minimum length of aT-join in H is at least the maximum size of a packing of
T-cuts inH. In fact, equality holds for bipartite graphs, see Proposition 1 below.

Two setsX andY of vertices ofH are said to belaminar if either X ⊆ Y or
Y ⊆ X or X ∩Y = ∅. The setsX andY arecross-freewhen they are laminar or
X∪Y = V(H). A collection of subsets ofV(H) is said to belaminar (resp.cross-
free) if any two of its members are laminar (resp. cross-free). Consider a collection
F of subsets ofV(H). Letting δ (F ) = {δ (X) : X ∈ F}, the collection of cuts
δ (F ) is said to belaminar (resp.cross-free) wheneverF is.

Proposition 1 (Seymour [18])Let H be a bipartite graph and T be a set of ver-
tices of H. The minimum length of a T-join in H equals the maximum size of a
packing of T -cuts in H. The maximum is attained by a cross-free collection of T -
cuts. ut

This proposition implies the next, where a 2-packingof T-cuts is a collection
of T-cuts such that each edge is contained in at most twoT-cuts of the collection.

Proposition 2 (Lovász [12])Let H be a graph and T be a set of vertices of H.
The minimum length of a T-join in G equals half the maximum cardinality of a
2-packing of T -cuts in H. The maximum is attained by a cross-free collection of
T -cuts. ut
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The following observation will be useful in subsequent sections. Below, aT-
cut δ (X) is said to beinclusion-wise minimalif there is noT-cut δ (Y) which is
properly contained inδ (X).

Observation 1 In Propositions 1 and 2, there exists an optimal collection ofT -
cuts which is laminar and consists only of inclusion-wise minimal T -cuts.

Proof Let F denote a collection of subsets ofV(H) such thatδ (F ) is opti-
mal and cross-free. Now assume thatF is chosen in such a way that the total
length ofδ (F ), that is∑X∈F |δ (X)|, is minimum. Then eachT-cut in δ (F ) is
inclusion-wise minimal. Otherwise, we could replace any non-minimal T-cut by
a smallerT-cut, uncross the resulting collection ofT-cuts by standard uncrossing
techniques (see, e.g., Proposition 3.4 in [6] or Section 80.7b in [17]) and obtain
a new cross-free packing (resp. 2-packing) ofT-cuts with the same size and a
shorter total length, a contradiction. Now lett denote any element ofT. When-
ever some memberX of F containst, we replace it by its complement̄X. Note
that this does not changeδ (F ) sinceδ (X) = δ (X̄). Because two setsX andY
are cross-free if and only if̄X andY are cross-free, the resulting collectionF is
cross-free. Moreover,F is laminar because none of its members containst. ut

2.2 Relating Edge Transversals toT-joins inG∗

Hadlock [9] first noted the following correspondence between odd cycle edge
transversals ofG andT-joins in its dual graph. Below,G∗ denotes the dual graph
of G andT the set of odd faces ofG, regarded as a subset ofV(G∗). We remind the
reader that the parity of a face equals the parity of its boundary,counting bridges
twice. Note that|T| is always even andG∗ always connected, so there exists a
T-join in G∗.

Lemma 1 (Hadlock [9]) A set of edges F is an odd cycle edge transversal of G
if and only if F∗ = {e∗ : e∈ F} ⊆ E(G∗) contains a T-join. Hence, the minimum
size of an odd cycle edge transversal of G equals the minimum length of a T-join
in G∗. ut

One last fact that we will need later is that a subsetC of the edge set ofG is
the edge set of an odd cycle if and only if the corresponding set of edgesC∗ in the
dual graphG∗ is an inclusion-wise minimalT-cut.

2.3 Relating Vertex Transversals toT-joins inG+

We now show how odd vertex cycle transversals ofG relate toT-joins in its face-
vertex incidence graph. As above,T denotes the set of odd faces ofG. Theface-
vertex incidence graphof G is the bipartite graphG+ on the faces and vertices
of G whose edges are the pairsf v, where f is a face ofG andv is a vertex ofG
incident to f . The face-vertex incidence graph is planar because it can be drawn in
the plane as follows. Keep all vertices ofG as vertices ofG+ and add a new vertex
vf in each facef of G. Then link each new vertexvf to the vertices ofG which are
incident to f by an arc whose interior is contained inf . Do this in such a way that
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two distinct arcs never have a common interior point. The resulting drawing ofG+

is referred to as astandard drawing. The relationship between transversals ofG
andT-joins in the face-vertex incidence graphG+ is stated in Lemma 2. Below,
and henceforth,F(G) denotes the face set ofG.

Observation 2 Let δ (X) be a T-cut in the face-vertex incidence graph G+ and
let R denote the subgraph of G determined by the edges incident to a face in X and
to a face inX̄. Then every vertex of R has even degree and R has an odd number
of edges. Hence, R contains an odd cycle.

Proof Pick some vertexv of G. Let e1, . . . , ed denote the edges ofG incident
to v listed in clockwise order and, for 1≤ i ≤ d, let fi be the face ofG incident
to bothei andei+1 (we let ed+1 = e1). Each facefi belongs either toX or to X̄.
Because there is an even number of switches betweenX and X̄ when one goes
clockwise aroundv, the degree ofv in R is even. From this, we infer thatRcan be
decomposed into edge-disjoint cycles. SinceX contains an odd number of vertices
of T, that is, an odd number of odd faces ofG, subgraphR has an odd number of
edges. The observation follows. ut

Lemma 2 A subset W of V(G) is a transversal of G if and only if the subgraph of
the face-vertex incidence graph G+ induced by W∪F(G) contains a T-join, that
is, every component of the subgraph has an even number of vertices of T .

Proof We first prove the forward direction. Suppose, by contradiction, that some
connected componentX of the subgraph ofG+ induced onW∪F(G) contains an
odd number of vertices ofT. Thenδ (X) is aT-cut inG+. Consider the edges ofG
incident to a face inX and to a face in̄X. These edges determine a subgraphRof G.
Let ebe an edge ofR. None of the endpoints ofebelongs toW because otherwise
all the faces incident to this endpoint would be inX ande would not belong to
R, a contradiction. Therefore,R is vertex-disjoint fromW. By Observation 2, we
know thatRcontains an odd cycle. SoW is not a transversal, a contradiction.

To prove the backward direction, consider an odd cycleC and aT-join J in G+

covering some vertices ofW and no vertex ofG−W. LetY be the set of faces of
G contained inC and letX = Y∪W. BecauseC is odd,X contains an odd number
of odd faces, that is, an odd number of elements ofT. Because|T| is even, there
is an odd number of elements ofT in X̄ too. It follows thatJ contains a pathP
from an element ofT in X to an element ofT in X̄. Let v be any vertex ofG on P
incident to a face inX and to a face in̄X. Thenv is a vertex ofC covered byJ. In
other words,W intersectsC. Therefore,W is a transversal. ut

3 The Edge Case

In this section, we give a short proof that a minimum odd cycle edge transversal
has size at most twice the size of a maximum packing of edge-disjoint odd cycles.
This result was recently proved by Král and Voss [11]. Their proof is quite long
(about 10 pages). Below, we give a concise proof. To be fair, we note that the result
of Lovász used below in our proof is implicitly contained in Král and Voss’ proof
[11]. As with their proof, our proof relies on the Four Colour Theorem[1,16].
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Theorem 1 (Král and Voss [11])The minimum size of an odd cycle edge trans-
versal of G is at most twice the maximum size of an odd cycle edge packing in
G.

Proof Let τ andν respectively denote the minimum size of an odd cycle edge
transversal ofG and the maximum size of an odd cycle edge packing inG. The
theorem trivially holds ifν = 0. Assume thatν > 0. By Lemma 1, the minimum
size of aT-join in G∗ equalsτ . By Proposition 2 and Observation 1, there is a
laminar familyF of 2τ subsets ofV(G∗) such thatδ (F ) = {δ (X) : X ∈ F} is a
2-packing of inclusion-wise minimalT-cuts inG∗. (Recall that minimalT-cuts in
G∗ correspond to odd cycles inG.) Without loss of generality, we can assume that
the outer faceo of G is odd and that no member ofF containso.

Let H denote the graph onF in which X andY are adjacent whenever the
correspondingT-cuts intersect. We claim thatH is planar. The claim obviously
implies the theorem because, by the Four Colour Theorem,H has a stable set of
size at least|V(H)|/4 = 2τ/4 = τ/2. This implies the desired inequalityτ ≤ 2ν .
In order to show thatH is planar, it suffices to show that every blockH ′ of H
is planar. LetF ′ denote the vertex set ofH ′. SinceF is laminar,F ′ is also
laminar and the setF ′ partially ordered by inclusion is a forest, i.e., every point is
covered by at most one point. LetX,Y andZ be three distinct elements ofF ′. The
following cannot occur: (i)X ⊆ Y ⊆ Z, (ii) X ⊆ Y andY∩Z = ∅. Indeed, if (i)
or (ii) holds then everyX–Z path inH ′ intersectsY becauseδ (F ) is a 2-packing.
This contradicts our assumption thatH ′ is a block ofH. ThenF ′ partially ordered
by inclusion is either a forest of height 0 (that is, an antichain) or a tree of height
1. In both cases, it is easy to construct a planar drawing forH ′ from G. Each
element ofF ′ determines a cycle in the plane graphG. In the first case, we pick
any point in the bounded face of each of these cycles and connect the points by an
arc whenever there is an edge inH ′ between the two corresponding elements of
F ′. This can be done in such a way that the resulting graph is planar. The second
case is similar. ut

4 Special Classes

In this section we show that the minimum size of an odd cycle (vertex) transversal
is at most twice the maximum size of an odd cycle (vertex) packing for a collection
of special classes of planar graphs. The techniques we develop here will then be
applied in the next section to give our main result for general planar graphs. For
technical reasons it will be useful to assume thatG is signed. Asignedgraph is a
graph whose edges are labeledodd (‘−’) or even(‘+’). In a signed graph, a cycle
(or more generally a subgraph) is said to beodd if it contains an odd number of
odd edges andevenotherwise. Similarly, a face of a plane signed graph is said to
beodd if its boundary has an odd number of odd edges, counting bridgestwice.
Otherwise, the face is said to beeven. A signed graph is said to bebalancedif it
has no odd cycle. Odd cycle transversals and odd cycle packingsare defined as
in the unsigned case. Henceforth, in order to avoid unnecessary repetitions, we
abbreviate odd cycle vertex transversal and odd cycle vertex packing respectively
astransversalandpacking. We denote byτ(G) andν(G) the minimum size of a
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transversal ofG and the maximum size of a packing inG, respectively. Finally,
we always assume thatG has no loops or multiple edges.

4.1 When All Odd Faces Mutually Intersect

We begin this section by stating a technical lemma which helps handling odd faces
of 3-connected planar graphs. We omit its proof because it is standard.

Lemma 3 Let G be a3-connected plane graph. Then every face of G is bounded
by a cycle. For any two faces f and f′ of G whose respective boundaries C and
C′ intersect, the following holds. Either C and C′ share exactly one vertex, or two
adjacent vertices and the edge between them. ut

The next result will be used as a base case to prove our main approximate
min-max result.

Proposition 3 If every two odd faces of G have intersecting boundaries, thenG
has a transversal of size at most2.

Proof Note that the boundaries of every pair of odd faces ofG intersect if and only
if every two odd cycles ofG intersect, that is, if and only ifν(G) ≤ 1. We prove
by induction on the number of vertices ofG thatν(G) = 1 impliesτ(G)≤ 2. This
clearly implies the proposition. IfG has at most three vertices, then the proposition
trivially holds. Now assume thatG has at least four vertices. We claim that we can
also assume thatG is 3-connected.

If G is not 3-connected, then it has a cutset consisting of two verticesu andv.
Let U be a connected component ofG−u− v, let G1 denote the subgraph ofG
induced onU ∪{u,v} and letG2 = G−U . If both G1 andG2 are unbalanced then
{u,v} is a transversal because we haveν(G) = 1. By symmetry, we can assume
thatG1 is balanced. Then allu–v paths inG1 have the same parity. LetG′ be the
graph obtained fromG2 by adding an edgeewith endpointsu andv that is labelled
odd if all u–v paths inG1 are odd, and even otherwise. We don’t add edgee if there
is already an edge betweenu andv or if there is nou–v path inG1. BecauseG′

has less vertices thanG andν(G′) = 1, there is a transversal of cardinality 2 inG′.
The same two vertices form a transversal inG. This concludes the proof of our
first claim.

From now on, we assume thatG is 3-connected. We claim that if every vertex
of G is incident to at most three odd faces, thenG has a transversal of size 2.
Indeed, if it is the case then consider theintersection graphof the odd faces, that
is, the graph whose vertices are the odd faces ofG and whose edges are the pairs
f f ′ where f and f ′ have a common incident vertex. The intersection graph is
complete because any two odd cycles inG have a common vertex. Any standard
drawing ofG+ can be modified to obtain a drawing of the intersection graph, so
the latter is planar. It follows thatG has either 2 or 4 odd faces. If there are 2 odd
facesf1 and f2, let v be a vertex incident to bothf1 and f2. By Lemma 2,{v} is a
transversal. If there are 4 odd facesf1, f2, f3 and f4, let v be a vertex incident to
both f1 and f2 andw be a vertex incident to bothf3 and f4. By Lemma 2,{v,w}
is a transversal. This concludes the proof of our second claim.



Approximate Min-Max Relations for Odd Cycles in Planar Graphs 9

Let nowv be a vertex which is incident to at least four odd faces, say,f1, f2,
f3 and f4, in counterclockwise order. By Lemma 3, the boundaries offi and fi+2
share exactly one vertex, namelyv, for i = 1,2. If all the odd faces are incident to
v, then{v} is a transversal by Lemma 2 and we are done. So we can assume there
is an odd facef that is not incident tov. Let f ′ be an odd face distinct fromf
which is also not incident tov. If there is no such face, then{v,w} is a transversal
(again by Lemma 2), wherew is any vertex incident to bothf and f1.

Consider the subgraphH of G+ obtained by adding to the subgraph ofG+

induced onv, f1, f2, f3 and f4 four paths of length two fromf to f1, f2, f3 and
f4 respectively. Letf , ui , fi be the vertex sequence of thei-th path, and letU =
{u1,u2,u3,u4}. We chose the paths in such a way that the number of vertices in
U is minimum (we maximize the intersections between them). In other words, we
ask thatH be an induced subgraph ofG+. Now consider any standard drawing
of G+. Where is the vertexvf ′ corresponding to the odd facef ′? It has to lie in
one of the faces ofH. Moreover, there is a path of length 2 inG+ from f ′ to each
of the fi ’s. Each path avoidsv becausef ′ is not incident tov. Because thefi ’s
are arranged aroundv in counterclockwise order, Lemma 3 impliesu1 6= u3 and
u2 6= u4. So it suffices to consider the following three cases (see Figure 1).

|U | = 4 |U | = 3 |U | = 2

v

u2

vf3

u3

vf1

vf

u4

vf4

u1

vf2

v

u2

vf3vf1

vf

u1

vf2

v

vf3

vf

vf2

vf1

vf4 u4
vf4 u4

u3 u3

u1
u2

Fig. 1 SubgraphH in each of the three cases

Case 1. |U | = 4. W.l.o.g.,vf ′ lies in the face ofH bounded by the cycle with
vertex sequencev, vf1, u1, vf , u2, vf2, v. Then there cannot be a path of length 2
avoidingv from f ′ to f3 in G+, a contradiction.

Case 2. |U | = 3. W.l.o.g., we assume thatu3 = u4. As in Case 1, we see that
there is no way to addvf ′ to the standard drawing ofH (see Figure 1) in such a
way that f ′ has a path of length 2 avoidingv to every fi in G+. For instance, ifvf ′

lies in the face bounded by the cycle with vertex sequencev, vf1, u1, vf , u4, vf4, v,
then there in no such path fromf ′ to f2, a contradiction.

Case 3. |U | = 2. W.l.o.g., we assume thatu1 = u2 andu3 = u4. Vertexvf ′ can
be in the face bounded by the cycle with vertex sequencev, vf2, u2, vf , u3, vf3, v or
in the face bounded by the cycle with vertex sequencev, vf1, u1, vf , u4, vf4, v. In
both cases, it must be adjacent to bothu1 andu3. By Lemma 2, we see that{v,u1}
is a transversal ofG. ut
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4.2 When Some Face Intersects Every Odd Face

In this section, we consider the graphs that have some face whose boundary inter-
sects the boundary of every odd face.

Observation 3 Let G be a4-connected plane graph and let y be a vertex of G not
incident to the outer face. If there are two distinct verticesx, z on the boundary of
the outer face and two distinct faces f and g different from the outer face such that
f is incident to x and g is incident to z, then x and z are neighbours on the boundary
of the outer face. Furthermore, the vertices x, y and z determine a triangular face.

Proof Let o denote the outer face. There exists a polygonP in R
2 included inG∪

o∪ f ∪g intersectingG precisely inx, y andz. By the Jordan Curve Theorem, we
know that all paths ofG from a vertex in the bounded region ofR

2\P to a vertex
in the unbounded region ofR

2\P go throughx, y or z. The situation is depicted in
Figure 2. Ifx andzare not adjacent on the boundary of the outer face, then the two
neighbours ofx on the boundary of the outer face lie in different regions ofR

2\P.
HenceX = {x,y,z} is a cutset of size 3 inG, a contradiction. Similar arguments
show thatxy andxzare edges ofG. The last part of the observation follows from
the fact that triangles in 4-connected plane graphs always determine faces. ut

y

x

z

P

Fig. 2 X = {x,y,z} is a cutset

Proposition 4 Assume G is4-connected, has at least five vertices and is such that
the boundary of the outer face intersects the boundary of every odd face. Then the
minimum size of a transversal of G is at most twice the maximumsize of a packing
in G.

Proof We assume thatG is not balanced. Otherwise, the result trivially holds. The
hypotheses severely restrict the way face boundaries intersect each other. Consider
two distinct odd facesf andg different from the outer face. By Lemma 3, the
boundaries of facesf andg intersect in a vertex or in a common edge.

If the boundaries off andg share a unique vertexy, then eithery is incident to
the outer face (see Figure 3.a), or the following occurs. By hypothesis, the bound-
aries off andg intersect that of the outer face. Lettingx andzdenote the respective
intersection vertices, which are distinct because otherwise the boundaries off and
g would share more than one vertex, we infer from Observation 3 thatx, y andz
determine a face adjacent to the outer face (see Figure 3.b). Moreover, becauseG
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is 4-connected,x is the only vertex incident to bothf and the outer face, andz is
the only vertex incident to bothg and the outer face. We refer to the triangle onx,
y andzas ajunctional triangle. Note that junctional triangles can be even because
G is signed.

If the boundaries off andg intersect in a common edgee(see Figure 3.c), then
one of the endpoints ofe is on the outer face and the other is not. This follows from
Observation 3. Moreover,f andg cannot both have a common incident edge with
the outer face because otherwiseG = K4, contradicting the fact thatG has at least
five vertices.

f f

z

a. b. c.

g
g

y
g

f

y x

Fig. 3 The three ways the boundaries off andg can intersect

Enumerate the vertices of the outer face in clockwise order asv1, v2, . . . , vn.
For the sake of simplicity, letv0 = vn andvn+1 = v1. Let I be the set of indicesi
such that there is a junctional triangle containing the edgevivi+1. For eachi ∈ I ,
we letui be the vertex of the junctional triangle incident to the edgee= vivi+1 and
opposite toe, and we letwi be any point in the interior of the edgee. For each odd
face f different from the outer face, we define an arcAf contained in the frontier of
the outer face, as follows. If the boundary off intersects the boundary of the outer
face in an edgevivi+1, then we letAf be the edgevivi+1. Otherwise, the boundary
of f intersects the boundary of the outer face in a vertexvi . If f is incident neither
to ui−1 nor toui then we letAf be the point{vi}. If f is incident toui−1 and not to
ui then we letAf be the part of the edgevi−1vi betweenwi−1 andvi . If f is incident
to ui and not toui−1 then we letAf be the part of the edgevivi+1 betweenvi and
wi . Finally, if f is incident to bothui andui−1 then we letAf be the arc linking
wi−1 andwi on the outer face and containingvi . By construction, two odd faces
f andg different from the outer face are incident to some common vertex if and
only if their corresponding arcsAf andAg have a nonempty intersection.

Let H denote the graph whose vertices are the odd faces different from the
outer face and whose edges are the pairsf g such thatAf ∩Ag 6= ∅ and f 6= g. Then
H is a circular arc graph. The maximum size of a packing inG is precisely equal
to the maximum size of a stable set inH, that is, we haveν(G) = α(H). Note that,
by Lemma 2, any set of vertices on the boundary of the outer face intersecting the
boundary of each odd face is an odd cycle transversal. We consider the following
two cases.

Case 1. There is some pointx on the boundary of the outer face that is not in
any arcAf . In this case,H is an interval graph. LetW be a minimum cardinality
subset of{vi : 1≤ i ≤ n}∪{wi : i ∈ I} meeting all the arcs. By Dilworth’s chain
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partitioning theorem [3], the complement of an interval graphH is perfect, hence
we have|W| = α(H) = ν(G). Now replace eachwi ∈ W by vi andvi+1. Let W′

be the resulting set of vertices ofG. ThenW′ is a transversal ofG of cardinality at
most 2|W|. In other words, we haveτ(G) ≤ 2ν(G).

Case 2. The arcsAf cover the whole boundary of the outer face. It follows that
for each edgee= vivi+1, the facefi incident toeand different from the outer face
is either an odd face or an even junctional triangle. Iffi is odd, then we letgi = fi .
Otherwise, we letgi be the odd face incident toviui . As above,ui denotes the
vertex of the junctional triangle incident toe which is opposite toe. Thus, every
edge of the outer face has a corresponding odd face. Note that ifthe boundaries
of gi andg j intersect theni ∈ { j −1, j +1} or i = j. So if n is even, then we have
τ(G)≤ 2ν(G) because{v1, . . . ,vn} is a transversal of sizen and{g1,g3, . . . ,gn−1}
yields a packing of sizen/2. Now assume thatn is odd. LetH ′ be the subgraph
of H induced by the facesgi . By what precedes, we know that the graphH ′ is
also a subgraph of the odd cycle with vertex sequenceg1, . . . ,gn, g1. If H ′ is not
connected, then it has a stable set of size(n+1)/2 and we getτ(G) ≤ 2ν(G) as
before. For the rest of the proof, we assume thatH ′ is connected. We claim that
either all fi ’s are odd faces or allfi ’s are even junctional triangles. Otherwise, there
is some indexi such thatfi is an even junctional triangle andfi+1 is an odd face.
In this case, the boundaries ofgi andgi+1 cannot intersect. So our claim holds.

If all fi ’s are odd faces then consider vertexv1. If {v2, . . . ,vn} is a transversal
then we haveτ(G) ≤ n− 1 ≤ 2ν(G) becauseH ′ has a stable set of size(n−
1)/2. Otherwise, there is some odd facef incident tov1 and to no othervi . Then
{ f}∪{ f2, f4, . . . , fn−1} yields a packing of size(n+1)/2. Hence, we haveτ(G)≤
2ν(G). BecauseH ′ is connected, if allfi ’s are even junctional triangles then the
odd faces ofG are exactly the outer face and the facesgi for i = 1, . . . ,n. It is easy
to see that{u1,v3,v4, . . . ,vn} is a transversal of sizen−1. BecauseH ′ has a stable
set of size(n−1)/2, we haveτ(G) ≤ 2ν(G). This concludes the proof. ut

We need a slight generalization of Proposition 4. Consider some face f of G,
which we refer to as acenter. The odd faces ofG whose boundary intersects the
boundary of the center are called thetargets(around f ). In particular, if f is odd
then f is itself a target. Alocal transversalis a setW of vertices ofG satisfying
the following properties:

(i) every target is incident to some vertex ofW;
(ii) at most one vertex ofW is not incident to the center;

(iii) if u∈W is not incident to the center, thenu is incident to exactly two targets.

The proof of Proposition 4 in fact shows:

Lemma 4 Assume G is4-connected and has at least five vertices. Let f be a face
of G acting as center. Then the minimum size of a local transversal of G is at most
twice the maximum number of boundary-disjoint targets in G. ut

4.3 When Odd Faces Are Disjoint

We begin this section by recasting the minimum transversal and the maximum
packing problems entirely in terms ofT-joins andT-cuts in the face-vertex inci-
dence graph. This slight change of terminology simplifies the proofs and enables
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us to state our results with more generality. LetH denote any connected bipartite
graph with bipartition{A,B}, and letT be any even subset ofB. Thewidth of a
T-join in H is the number of vertices ofA it covers. Thefringeof aT-cutδ (X) in
H is the set of vertices ofA which have a neighbour inX and a neighbour in̄X.
Note that the minimum width of aT-join in H is at least the maximum number of
fringe-disjointT-cuts inH. This is due to the fact that everyT-join covers some
element in the fringe of everyT-cut.

We now relate the above definitions to odd cycle vertex transversals and pack-
ings in plane signed graphs. Consider the case whereH is the face-vertex inci-
dence graphG+ of the plane signed graphG, setA is the vertex set ofG, setB
is the face set ofG, and setT is, as before, the set of odd faces ofG. By Lemma
2, everyT-join in H defines a transversal ofG, namely, the vertices ofA it cov-
ers. Reciprocally, to every transversalW there corresponds aT-join in H which
covers some vertices ofW and no vertex ofA\W. So the minimum width of a
T-join in H equals the minimum size of a transversal ofG. Furthermore, there is
a correspondence betweenT-cuts inH and odd cycles inG. By Observation 2,
everyT-cut in H determines a subgraph ofG which contains an odd cycle. The
vertex set of the subgraph is the fringe of theT-cut. Reciprocally, every odd cycle
in G determines aT-cut inH whose fringe is the vertex set of the cycle. Hence the
maximum size of a collection of fringe-disjointT-cuts inH equals the maximum
size of a packing inG. We use the following notation: letν denote the maximum
size of a collection of fringe-disjointT-cuts inH, let τ denote the minimum width
of aT-join in H and let` denote the minimum length of aT-join in H.

Proposition 5 Let H be any connected bipartite graph with bipartition{A,B} and
let T denote any even subset of B. Assume that the shortest path distance dH(t, t ′)
between any two distinct elements t and t′ of T is at least2c for some c≥ 1. Then
we have

ν ≥
1
2
(`−|T|+1) ≥

(

1−
1
c

)

τ .

Proof Let F denote a laminar collection of` subsets ofA∪B such thatδ (F ) =
{δ (X) : X ∈ F} is a collection of edge-disjointT-cuts inH. Such a laminar col-
lection ofT-cuts is guaranteed to exist by Proposition 1 and Observation 1.

We claim that wheneverX, Y andZ are three distinct elements ofF such that
X ⊆Y ⊆Z or X ⊆Y andY∩Z = ∅, thenT-cutsδ (X) andδ (Z) are fringe-disjoint.
It suffices to consider the first case. Suppose there exists an elementa∈ A which
belongs to the fringes ofX andZ. In particular,a has a neighborb in X and a
neighborb′ in Z̄. If a∈ Y thenab′ ∈ δ (Y)∩ δ (Z), a contradiction. Ifa∈ Ȳ then
ab∈ δ (X)∩δ (Y), a contradiction. So our claim holds.

The setF partially ordered by inclusion is a forest. Its leaves are disjoint
subsets ofA∪B such that each of them has some common element withT. Hence,
F has at most|T| leaves. Note that the claim above implies that two nodes of the
forestX andY are fringe-disjoint unlessX is the parent ofY, Y is the parent ofX,
X andY are siblings orX andY are roots.

Rank the children of each node of the forestF arbitrarily and order its roots
arbitrarily also. LetF ′ denote the subset ofF formed by all nodes which are
ranked first in their respective ordering. Lettingλ denote the number of leaves of



14 S. Fiorini et al.

F , we claim thatF ′ contains exactly|F |−λ + 1 elements. Indeed, every non-
leaf node inF has exactly one child that is inF ′. Conversely, every node inF ′

except one (the first root ofF ) is the first child of a non-leaf node. Our second
claim follows. Becauseλ ≤ |T|, we have|F ′| ≥ |F |− |T|+1.

To obtain a packing of fringe-disjointT-cuts, colour the elements ofF ′ black
or white in such a way that no parent and child have the same colour, i.e., whenever
X is the parent ofY thenX andY have different colours. In other words, colour
the subgraph of the Hasse diagram ofF induced onF ′ with two colours. Let
F ′′ denote the biggest of the two colour classes. Thenδ (F ′′) is a collection of
fringe-disjointT-cuts of size at least12(|F |− |T|+1) = 1

2(`−|T|+1).
Note that every minimum lengthT-join in G can be thought of as a perfect

matching onT whose edges have become edge-disjoint shortest paths inH. Hence
` is at least|T|2 ·2c. Note also thatτ is at most`2 because the width of anyT-join
is at most half its length. It follows that we have

ν ≥
1
2
(`−|T|+1) ≥

1
2
(`−|T|) ≥

(

1−
1
c

)

`

2
≥

(

1−
1
c

)

τ .

ut

Corollary 1 If the boundaries of the odd faces of G are pairwise disjoint then the
minimum size of a transversal of G is at most twice the maximumsize of a packing
in G.

Proof This follows directly from Proposition 5 withH = G+, A = V(G), B =
F(G) andc = 2. ut

5 Combining the Local and Global Approaches

We are now ready to prove our result for general planar graphs. We willcombine
the local and global approaches we have described to give our main approximate
min-max result. Towards this end, letρ(G) denote the minimum size of a collec-
tion of faces ofG such that the boundary of every odd face ofG intersects the
boundary of some face in the collection. The following two lemmas are simple
and we omit their proofs. Lemma 5 implies thatρ(G′) ≤ ρ(G) for any subgraph
G′ of G.

Lemma 5 Let G be a plane signed graph withρ(G) = r, and let f1, . . . , fr be a
collection of faces such that for every odd face f there is an index i such that the
boundary of fi intersects the boundary of f . Then we haveρ(G−e) ≤ r for each
edge e. Moreover, we haveρ(G−e) ≤ r −1 if edge e is incident to fi and fj for
some distinct indices i and j. ut

Lemma 6 Let G be a plane graph and X be a cutset of G with at most three ver-
tices (we allow the case X= ∅). If G has no cutset with fewer than|X| elements,
then there exists a polygon P⊂ R

2 intersecting G only in vertices and such that X
is precisely the intersection of P and G and each region ofR

2\P contains a vertex
of G. ut



Approximate Min-Max Relations for Odd Cycles in Planar Graphs 15

The next lemma, combined with Lemma 6, will allow us to focus ongraphsG
which are 4-connected.

Lemma 7 Let G be a plane signed graph, let P⊂ R
2 be a polygon intersecting

G only in vertices or along entire edges, and let X= P∩V(G). Assume that each
region R1 and R2 of R

2\P contains at least one vertex of G. Then X is a cutset in
G. For i = 1,2, let Gi be the part of G contained in the closure of region Ri . Then
we haveρ(G1)+ρ(G2) ≤ ρ(G)+2.

Proof Let { f1, . . . , fr} denote a collection ofr = ρ(G) faces ofG such that the
boundary of every odd face ofG intersects the boundary of some face of the col-
lection. Without loss of generality, we can assume that there are some (possibly
distinct) indicesr1 andr2 with r1 ≤ r2 such thatf1, . . . , fr1 are contained inR1,
and fr2, . . . , fr are contained inR2. For i = 1,2, letgi denote the outer face ofGi .
Then the boundary of every odd face ofG1 intersects the boundary of some face
in { f1, . . . , fr1}∪{g1}. Similarly, the boundary of every odd face ofG2 intersects
the boundary of some face in{ fr2, . . . , fr}∪{g2}. The lemma follows. ut

Our main result, the inequalityτ(G) ≤ 10ν(G), will be derived as a corollary
of the next result. Before going on with proofs, we mention that we think that
this result is not tight. In particular, we do not know any example of a graph with
τ(G) > 2ν(G). We believe thatτ(G)≤ 2ν(G) holds for all planar graphsG (which
of course would be a tight result).

Theorem 2 For every unbalanced plane signed graph G, we have

τ(G) ≤ 7ν(G)+3ρ(G)−8.

Proof LetGbe a counterexample with|V(G)| as small as possible, and let{ f1, . . . ,
fr} denote any minimum collection of faces ofG such that the boundary of every
odd face ofG intersects the boundary of some face in the collection. Note that we
haver = ρ(G) ≥ 1. We claim: (1)G has a packing of size 2 and no transversal
of size at most 9; (2)G is 4-connected; (3) the shortest path distancedG+( fi , f j)
betweenfi and f j is at least 8 wheneveri 6= j.

Proof of Claim (1). If G has no packing of size 2, then by Proposition 3, we have

τ(G) ≤ 2 = 7+3−8≤ 7ν(G)+3ρ(G)−8,

a contradiction. SoG has a packing of size 2, that is, we haveν(G) ≥ 2. Because
ρ(G) ≥ 1, graphG has no transversal of size at most 9, that is, we haveτ(G) > 9.
Otherwise, we have

τ(G) ≤ 9 = 7·2+3−8≤ 7ν(G)+3ρ(G)−8,

a contradiction. So Claim (1) holds.

Proof of Claim (2). By the previous claim,G has at least 10 vertices. Therefore, to
prove the present claim, it suffices to prove thatG has no cutset of size 3. However,
in order to use Lemma 6 we need to show thatG is 3-connected; we leave this
straightforward task to the reader. Now assume thatG is 3-connected. Suppose
that G has a cutsetX consisting of three verticesx, y andz. Let Y = {y,z}. By
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Lemma 6, there exist subgraphsG1 andG2 of Gand a polygonP⊂R
2 determining

two regionsR1 andR2 in the plane such thatP intersectsG precisely inx, y and
z, andGi equals the restriction ofG to the closure of regionRi , for i = 1,2. By
modifying P if necessary, we can then assume thatP intersectsG exactly along
the subgraph ofG induced byX. Now it suffices to consider the following two
cases (see below). Indeed, ifG1−X andG2−X are both balanced thenG has a
transversal of size at most 3, contradicting Claim (1).

Case 1. NeitherG1−X nor G2−X is balanced. It follows that neitherG1−Y
nor G2−Y is balanced. If we haveν(G) ≥ ν(G1−Y)+ ν(G2−Y) then Lemma
7 implies

τ(G) ≤ 2+ τ(G1−Y)+ τ(G2−Y)

≤ 2+7ν(G1−Y)+3ρ(G1−Y)−8+7ν(G2−Y)+3ρ(G2−Y)−8

≤ 7ν(G)+3ρ(G)+2+6−16= 7ν(G)+3ρ(G)−8,

a contradiction. Else, we haveν(G) = ν(G1−Y)+ν(G2−Y)−1. It follows that
every maximum packing ofG1−Y and every maximum packing ofG2−Y hit the
vertexx. So we haveν(G1−X) = ν(G1−Y)−1, ν(G2−X) = ν(G2−Y)−1 and
ν(G) = ν(G1−X)+ν(G2−X)+1. Therefore, we have

τ(G) ≤ 3+ τ(G1−X)+ τ(G2−X)

≤ 3+7ν(G1−X)+3ρ(G1−X)−8+7ν(G2−X)+3ρ(G2−X)−8

≤ 7ν(G)+3ρ(G)+3−7+6−16≤ 7ν(G)+3ρ(G)−8,

a contradiction.
Case 2. G1−X is balanced andG2−X is not balanced. IfG1 is not balanced,

then we haveν(G) ≥ ν(G2−X)+1 and hence

τ(G) ≤ 3+ τ(G2−X) ≤ 3+7ν(G2−X)+3ρ(G2−X)−8

≤ 7ν(G)+3ρ(G)+3−7−8≤ 7ν(G)+3ρ(G)−8,

a contradiction. SoG1 is balanced. Consider the graphG′
2 obtained fromG2 by

adding a triangle onx, y andz to G′
2. We do not add an edge if it is already present

in G2. Since we can easily modifyG to get a drawing ofG′
2, we can regardG′

2 as
a plane graph. Consider any two distinct verticesu, v in X = {x,y,z}. BecauseG1
is balanced, allu–v paths inG1 have the same parity. We let the parity of the edge
uv in G′

2 be the parity of allu–v paths inG1. Note that we haveτ(G) ≤ τ(G′
2) and

ν(G′
2) ≤ ν(G)1. Moreover, we haveρ(G′

2) ≤ ρ(G), as we now prove. SinceG is
3-connected, there is a vertext in G1−X sending three independent paths tox,
y andz in G1. By Lemma 5, if we delete fromG all edges which are contained
in G1 except those which belong to one of the three paths, the resulting graphG′

satisfiesρ(G′)≤ ρ(G). Since the triangle onx, y, zdetermines an even face inG′
2,

we haveρ(G′
2) ≤ ρ(G′). Hence, we haveρ(G′

2) ≤ ρ(G), as claimed. It follows
that we have

τ(G) ≤ τ(G′
2) ≤ 7ν(G′

2)+3ρ(G′
2)−8≤ 7ν(G)+3ρ(G)−8,

a contradiction. In conclusion, Claim (2) holds.

1 Moreover, as indicated by an anonymous referee, we haveτ(G) = τ(G′
2) andν(G′

2) = ν(G).
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Proof of Claim (3). Suppose thatdG+( fi , f j) ≤ 6 for some distinct indicesi and j.
Let X denote the set of vertices ofG on a shortest path betweenfi and f j in G+.
SoX contains at most three vertices. By Lemma 5, we haveρ(G−X)≤ ρ(G)−1.
BecauseG−X is not balanced, we have

τ(G) ≤ 3+ τ(G−X) ≤ 3+7ν(G−X)+3ρ(G−X)−8≤ 7ν(G)+3ρ(G)−8,

a contradiction. So Claim (3) holds.
Now we would like to apply Lemma 4 around each face in the collection

{ f1, . . . , fr}. So each facefi will perform as a center. The targets aroundfi are
the odd faces ofG whose boundary intersects the boundary off . By Claim (3),
wheneverg is a target aroundfi andg′ is a target aroundf j with i 6= j, the bound-
aries ofg andg′ are disjoint. By Lemma 4, for each centerfi there exists a packing
of odd cyclesCi formed by target boundaries, and a local transversalWi whose size
is at most twice the size of packingCi . LetClocal denote the union of packingsC1,
. . . ,Cr . ThenClocal is a packing.

Now let H = G+, let A = V(G) and letB = F(G). Consider the graph̃H ob-
tained fromH by contracting, for 1≤ i ≤ r, all vertices ofH at distance at most 2
from fi to a single vertexf̃i . Note thatH̃ is still bipartite, with bipartition{Ã, B̃},
where

Ã = A\{a∈ A : dH(a, fi) ≤ 2 for somei with 1≤ i ≤ r},

B̃ = B\{b∈ B : dH(b, fi) ≤ 2 for somei with 1≤ i ≤ r}∪{ f̃i : 1≤ i ≤ r}.

Let T̃ denote the set of thosẽfi ’s that correspond to centersfi which have an
odd number of targets around them. SoT̃ is an even subset of̃B. Let J̃ denote
a minimum lengthT̃-join in H̃. Then, by Proposition 5, there is a collection of
fringe-disjointT̃-cutsδ (F̃ ) in H̃ such that

|δ (F̃ )| ≥
1
2
(|J̃|− |T̃|+1) ≥

1
2
(|J̃|− r +1) ⇒ |J̃| ≤ 2|δ (F̃ )|+ r −1.

This collection of fringe-disjoint̃T-cuts yields a packing of odd cyclesCglobal in
G, of the same size. ThẽT-join J̃ defines a set of edgesJglobal in H = G+, as
follows. Every edge ofJ̃ that belongs toH is kept as it is. Every other edge of
J̃ is of the formvf̃i and is replaced by any shortest path betweenv and fi in H.
Because we havedH̃( f̃i , f̃ j) ≥ 4 wheneveri 6= j and becausẽJ is the edge-disjoint
union of shortest paths between pairs of vertices ofT̃, the length ofJglobal is at
most twice the length of̃J.

For each local transversalWi , let Ji denote the set of edgesv f of the face-
vertex incidence graphG+ such thatv∈Wi , and f is a target aroundfi incident to
v or f = fi . Let Jlocal denote the union ofJ1, . . . ,Jr . The union ofJlocal andJglobal
contains aT-join, sayJ. Indeed, by the fact that eachWi is a local transversal
and by construction of̃H, each component of the subgraph ofG+ defined byJ
contains an even number of elements ofT. Because the width ofJ is at most the
width of Jlocal plus the width ofJglobal and because the width of aT-join is at most
half of its length, the width ofJ is at most

r

∑
i=1

|Wi |+
1
2
|Jglobal| ≤ 2|Clocal|+2|Cglobal|+ r −1≤ 4ν(G)+ρ(G)−1.
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By Claim (1), we haveν(G) ≥ 2. Therefore,

τ(G) ≤ 4ν(G)+ρ(G)−1≤ 7ν(G)+3ρ(G)−8,

a contradiction. This concludes the proof of the theorem. ut

Becauseρ(G) is at most the size of any inclusion-wise maximal collection of
boundary-disjoint odd faces inG, which is in turn at mostν(G), we obtain our
main result from Theorem 2.

Corollary 2 For every plane signed graph G, we haveτ(G) ≤ 10ν(G). ut

6 A 11-approximation algorithm for packing odd cycles in planar graphs

We now briefly discuss how the results proved in the previous sections imply a
11-approximation algorithm for the problem of finding a maximum collection of
vertex-disjoint odd cycles in a planar graph.

At the heart of the algorithm lies a recursive procedure with the following
characteristics. The input of the procedure is an unbalanced plane signed graph
G and a collectionH of faces whose boundaries intersect the boundary of ev-
ery odd face ofG. The procedure returns a packingC and a transversalW such
that |W| ≤ 8|C |+ 3|H |−9. (Notice the change in the constants with respect to
the original inequalityτ ≤ 7ν + 3ρ − 8 proved in Theorem 2.) The main algo-
rithm starts by finding in the input graphG an inclusion-wise maximal collection
of odd faces with vertex-disjoint boundariesH and then calls the recursive pro-
cedure forG and H . As above, letC andW respectively denote the packing
and transversal returned by the procedure. If|C | < |H | thenC is replaced by
the packing determined byH . Now |H | ≤ |C | and hence|W| ≤ 11|C |, which
implies|C | ≥ 1

11 ·ν(G).
In order to describe the recursive procedure we simply transpose the proof of

Theorem 2. Thus the first action carried out by the procedure is to ensure thatGhas
a packing of size 2 and no small transversal (say, of size at most 10). Otherwise
the procedure returns a packing of size 1 or 2 (if one exists) and a minimum
transversal. This step can be done efficiently. Finding a packing of size at most 2
in a planar graph is easy. Moreover, there exists a linear time algorithm computing
a minimum transversal in a planar graphG with τ(G) ≤ 10, see [5] (see also [15]
for a quadratic algorithm in general graphs). Then the procedure checks if the
graph is 4-connected. If not, a cutset of size at most 3 is found andthe procedure
recurses on one or both sides of the separation, modifyingG andH according to
the situation. An important difference with the proof of Theorem 2is that if X is
any cutset (of size at most 3) such thatG1−X andG2−X are both unbalanced,
the procedure always recurses onG1−X andG2−X and adds all the vertices of
X to the two transversals found to build a transversal ofG. This is the reason why
we obtain a 11-approximation and not a 10-approximation.

If G has a packing of size 2, no small transversal and is 4-connected,the pro-
cedure continues as follows. As before, we call the faces inH the centers. If it is
the case that two centers are at a distance at most 6 to each other, the vertices in a
shortest path linking them are removed fromG (distances and paths are considered
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in the face-vertex incidence graph). The collectionH is modified and the proce-
dure recurses. Otherwise, the centers are such that the distance between any pair
of them is at least 8. Then the procedure finds a local packing around each center.
The union of these isClocal. In Section 4 we showed that finding a local packing
is essentially the same as finding a maximum stable set in an interval graph (see
Proposition 4), which can be done in polynomial time. Then the procedure con-
structs a global packing. In Section 4.3 we showed how a packingof T-cuts in
a particular subgraph of the face-vertex incidence graph yields apacking of odd
cycles inG of the same size. This packing is the one we callCglobal. As the face-
vertex incidence graph is bipartite, optimal packings ofT-cuts can be found in
polynomial time in bipartite graphs [18]. Finally, the procedure finds a transversal
W using a combination of interval graph clique covering andT-join techniques.
It returns the largest packing ofClocal andCglobal, together with the transversalW.
This concludes the description of our 11-approximation algorithm for the packing
problem.
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