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Abstract We study the ratio between the minimum size of an odd cycle xerte
transversal and the maximum size of a collection of vertex-gisfld cycles in

a planar graph. We show that this ratio is at most 10. For the gmneing edge
version of this problem, Kal and Voss recently proved that this ratio is at most 2;
we also give a short proof of their result.
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1 Introduction

A set of vertices of a grapt® is anodd cycle (vertex) transversilits removal
makesG bipartite. Odd cycle transversals are sometimes caltieticycle covers

An odd cycle (vertex) packinig G is a collection of vertex-disjoint odd cycles in
G. Let T andv respectively denote the minimum size of an odd cycle transiversa
and the maximum size of an odd cycle packing. Because evergyafigltransver-

sal has to meet every odd cycle, we have 1. Our main result is to show that

T < 10v for all planar graphs&.

This work was supported by FNRS, NSERC (PGS Master awardadzaResearch Chair in
Graph Theory, award 288334-04) and FQRNT (award 2005-N&+98

S. Fiorini: GERAD — HEC Monteal, 3000 chemin de la &e-Sainte-Catherine, Moi&al,
Québec, H3T 2A7, Canad®resent addresdDépartement de Maématique, Universi Libre
de Bruxelles, CP 216, 55 avenue F.D. Roosevelt, B-1050, élies; Belgium. E-mail: sfior-
ini@ulb.ac.be

N. Hardy: Department of Mathematics and Statistics, McGiiiversity, Burnside Building, 805
Sherbrooke West, Montreal, Quebec, H3A 2K6, Canada. E-hmaitly @math.mcgill.ca

B. Reed: School of Computer Science, McGill University, @4diversity, Montreal, Quebec,
H3A 2A7, Canada. E-mail: breed@cs.mcgill.ca

A. Vetta: Department of Mathematics and Statistics, ancdb8kbf Computer Science, McGill
University, Room 1118, Burnside Building, 805 SherbrookestyYMontreal, Quebec, H3A 2K6,
Canada. E-mail: vetta@math.mcgill.ca




2 S. Fiorini et al.

For general graphG, it is known thatr is not bounded by any function of In
other words, the family of odd cycles does not satisfy the 8srfbsa property’.
Let »# denote a family of graphs. We denote by the minimum size of a set
of verticesW such thatG — W has no subgraph isomorphic to a graphsfi,
and byv, the maximum size of a collection of vertex-disjoint subgrapashe
isomorphic to a graph iZ’. Then.sZ is said to have th&rdos-Fosa property
if there is a functionf such thatr,» < f(v,). Erdds and Bsa [4] showed that
the family of cycles satisfies this property. This is how the adiardos-Fosa
property” originated. The family of odd cycles does not satisfy Erdds-Fosa
property because there are projective-planar graphs knowscier wallg14]
for which v = 1 andt is arbitrarily large. In [14], Reed proved that odd cycles
satisfy the Erds-Fosa property in graphs without an Escher wall of heigHbr
any fixedh > 3. Since planar graphs do not contain any Escher wall, thestsexi
a function f such thatr < f(v) for all planar graph$s. However, the function
f implicit in [14] is huge. A similar type of result in this area digs to highly
connected graphS. For instance, Reed and Rautenbach [13] proveditkafv
for 576v-connected graphs.

The minimum odd cycle transversal (or cover) problem and maximdd o
cycle packing problem are both NP-hard, even when the input iareapigraph.
The NP-hardness of the covering problem is a direct consequenie fzct that
the vertex cover problem restricted to planar graphs is NP-hard [4.dhown
in the second author's Master’s thesis [10] that the packinglenolis NP-hard.
This is done by adapting a proof of Caprara and Rizzi [2] that figdimaximum
collection of vertex-disjoint triangles in a planar graph is Niteh

The NP-hardness of the odd cycle covering and packing problentigates
the search for approximation algorithmspPapproximation algorithnior a min-
imization problem is a polynomial-time algorithm that returnsasfble solution
whose cost is at mog times the cost of an optimal solution. Many successful
approximation algorithms are based on linear programming. Intypis of ap-
proach, the problem is first formulated as an integer program. By drgphe
integrality constraints, a linear programming relaxation isaoted. The lower
bound given by the linear program (LP) is used to guarantee thatdst of the
solution produced by the algorithm is withmof the optimum. The best approxi-
mation guarantep which can be obtained along these lines isittiegrality gap
of the relaxation, i.e., the maximum ratio of the optimum valu¢he LP bound.
Approximation algorithms and integrality gaps for maximizatgyoblems are de-
fined similarly.

The minimum odd cycle transversal (resp. packing) problem carrbeifated
as integer programs whose linear program relaxations are duétisig\é denote
the vertex set os and& denote the set of odd cycles®) these dual LPs are:

COVERING LP: min zy\,
ve

w>1 VYCeo

v.veC

Ww>0 WweV
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PACKING LP: max Z Xc
Ceo
x<1l WeV
C.veC
x>0 VCeo.

Goemans and Williamson [8] gave a constant factor approximatigorithm for
the minimum odd cycle transversal problem in planar graphs usi@grimal-
dual method (see, e.g., Vazirani [19]). In doing so they proved tgairitegrality
gap of the covering LP is at mo§t They conjecture that it is actuall%. Our
results show that the integrality gap of the packing LP is bednay a constant.
In addition, our structural result generates a polynomial timeagdgroximation
algorithm for the maximum odd cycle packing problem in planapbsa

We remark that there are corresponding edge versions of these gpaedn
packing problems. Recently, &rand Voss [11] showed that the minimum size of
an odd cycle edge transversal in a planar graph is at most twégaaltimum size
of an odd cycle edge packing. We also give a short proof of theiritre

We conclude this introductory section with an overview of thpgraAt the
heart of this work lies a connection between odd cycle transigeasaT -joins in
a certain auxiliary graph. In particular, will correspond to the set of odd faces
of the planar grapi®. In the vertex case the auxiliary graph we need to consider
is the face-vertex incidence gra@. Specifically, we show that minimum ver-
tex transversals correspondTejoins inG™ covering the least number of vertices
of G. In the edge case the auxiliary graph is the dual gi@phHere minimum
transversals correspond Tejoins in G* with the least number of edges. This re-
lationship was first used by Hadlock [9] to derive a polynomialdialgorithm for
the maximum cut problem in planar graphs. We present the negdsszkground
on T-joins andT-cuts in Section 2.1 and describe the connection between odd
cycle transversals arifijoins in Section 2.2 for the edge case and in Section 2.3
for the vertex case.

In Section 3 we present our proof that a minimum edge transversaiha
at most twice the size of a maximum odd cycle edge packing pidof, as with
the proof of Kél and Voss, requires the use of the Four Colour Theorem. We
use it to show that any laminar 2-packing (defined belowk ofld cycles inG
contains;llk edge-disjoint odd cycles. A result by Lasz onT-joins andT-cuts
then guarantees the existence of a 2-packing whose size esttvgieninimum size
of an odd cycle edge transversal. This gives the result.

To prove our main result we begin by considering three specissekaof pla-
nar graphs. In Section 4.1 we consider graphs in which every paida faces
intersect. In Section 4.2 we consider 4-connected graphs sathdme (possibly
even) face intersects every odd face. Finally in Section 4.8xaenine graphs in
which every pair of odd faces is ‘far’ apart. In all of these classegraphs we
show thatr < 2v. The proof of our main result, given in Section 5, combines the
techniques developed for these special cases. We lbet a minimum counterex-
ample to the theorem. We take a minimum collection of fac&s,afhich we call
centers such that every odd face &fintersects some face of the collection. Then
we show thaG must be 4-connected with all its centers ‘far’ apart. Next, udieg t
techniques of Section 4.2 we find a ‘local’ transversal arount eaoter. At the
same time, we find a packing of odd faces around each centee 8ia centers
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are ‘far’ apart the union of these packings is also a packing. Wéhigunion the
local packing. The results of Section 4.3 allow us to extend the Hansver-
sals to a transversal of the whole graph. Associated with thisversal we find
a different packing of odd cycles, which we call thbal packing. The size of
the transversal we obtain is within a constant factor of the gfzhe largest of the
local packing and the global packing. Our main result them$adl. In the last sec-
tion of the paper, Section 6, we sketch a 11-approximatiornritifgo for packing
odd cycles in planar graphs.

2 T-Joins and Odd Cycle Transversals

In this section we show how minimum odd cycle edge and verteswamsals of a
plane graplG relate toT -joins in the dual graph and face-vertex incidence graph
of G, respectively. First, we give some backgroundTejoins andT-cuts along
with two min-max results that we will need.

2.1 Background

Consider any grapH and set of vertice$ in H. A T-joinin H is a set of edge3
such thafl equals the set of odd degree vertices in the subgraphdstermined
by J. There exists & -join in H if and only if each connected componenttbf
contains an even number of verticesTofin particular, ifH has aT -join then|T]|
is even. AT -cutin H is a cut having an odd number of verticestobn each side.
In other words, whenever a set of verticésontains an odd number of vertices of
T, the cutd(X) = {xye E(H) : x e X,y ¢ X} is aT-cut. EveryT -join intersects
everyT-cut. Furthermore, a set of edges intersecting eVecyt contains & -join.
Thelengthof a T-join is the number of edges it contains.packingof T-cuts is
a collection of edge-disjoint -cuts. Because evefly-join intersects every -cut,
the minimum length of & -join in H is at least the maximum size of a packing of
T-cuts inH. In fact, equality holds for bipartite graphs, see Propositioelbva.
Two setsX andY of vertices ofH are said to béaminar if either X CY or
Y C Xor XNY = @. The setsX andY arecross-freewhen they are laminar or
XUY =V(H). A collection of subsets &f (H) is said to bdaminar (resp.cross-
freg) if any two of its members are laminar (resp. cross-free). Considdrection
Z of subsets oV (H). Letting 8(.%) = {d(X) : X € .#}, the collection of cuts
O(F) is said to bdaminar (resp.cross-fre¢ whenever% is.

Proposition 1 (Seymour [18])Let H be a bipartite graph and T be a set of ver-
tices of H. The minimum length of a T-join in H equals the marinsize of a
packing of T-cuts in H. The maximum is attained by a cross-fofleation of T -
cuts. O

This proposition implies the next, where gpackingof T-cuts is a collection
of T-cuts such that each edge is contained in at mosfliveats of the collection.

Proposition 2 (Lovasz [12])Let H be a graph and T be a set of vertices of H.
The minimum length of a T-join in G equals half the maximumipafiy of a
2-packing of T-cuts in H. The maximum is attained by a cross-fodleation of
T-cuts. ad
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The following observation will be useful in subsequent sectidelow, aT -
cut 6(X) is said to banclusion-wise minimaif there is noT-cut d(Y) which is
properly contained id(X).

Observation 1 In Propositions 1 and 2, there exists an optimal collectiofT ef
cuts which is laminar and consists only of inclusion-wiseimai T -cuts.

Proof Let .7 denote a collection of subsets W¥{H) such thatd(.#) is opti-
mal and cross-free. Now assume thtis chosen in such a way that the total
length of §(.%), that isy xc & |6(X)|, is minimum. Then eacfi-cut in 6(.%) is
inclusion-wise minimal. Otherwise, we could replace any nonimal T-cut by

a smallerT -cut, uncross the resulting collection®fcuts by standard uncrossing
techniques (see, e.g., Proposition 3.4 in [6] or Section 8{h7]) and obtain
a new cross-free packing (resp. 2-packing)Te€uts with the same size and a
shorter total length, a contradiction. Now tetlenote any element af. When-
ever some membet of .% containst, we replace it by its complemet. Note
that this does not chang®.%) sinced(X) = d(X). Because two set§ andY
are cross-free if and only K andY are cross-free, the resulting collectioh is
cross-free. MoreoverZ is laminar because none of its members contains O

2.2 Relating Edge TransversalsTgoins in G*

Hadlock [9] first noted the following correspondence between gaddecedge
transversals o6 andT-joins in its dual graph. Below;* denotes the dual graph
of GandT the set of odd faces @, regarded as a subsetdfG*). We remind the
reader that the parity of a face equals the parity of its boundannting bridges
twice. Note thatT| is always even an@* always connected, so there exists a
T-join in G*.

Lemma 1 (Hadlock [9]) A set of edges F is an odd cycle edge transversal of G
if and only if F* = {€" : e F} C E(G*) contains a T -join. Hence, the minimum
size of an odd cycle edge transversal of G equals the minirangih of a T -join

in G*. O

One last fact that we will need later is that a suliSetf the edge set ob is
the edge set of an odd cycle if and only if the correspondingfed@esC* in the
dual graphG* is an inclusion-wise minimar -cut.

2.3 Relating Vertex TransversalsTejoins in G*

We now show how odd vertex cycle transversal&oklate toT -joins in its face-
vertex incidence graph. As abovedenotes the set of odd faces®f Theface-
vertex incidence grapbf G is the bipartite graplG™ on the faces and vertices
of G whose edges are the paifrg, wheref is a face ofG andv is a vertex ofG
incident tof. The face-vertex incidence graph is planar because it can b& dnaw
the plane as follows. Keep all vertices®fas vertices o5 and add a new vertex
v in each face of G. Then link each new vertex to the vertices o6 which are
incident tof by an arc whose interior is containedfinDo this in such a way that
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two distinct arcs never have a common interior point. The riegpttrawing ofG*+
is referred to as atandard drawing The relationship between transversalsSof
andT-joins in the face-vertex incidence graf@ is stated in Lemma 2. Below,
and henceforth (G) denotes the face set Gf

Observation 2 Let 3(X) be a T-cut in the face-vertex incidence graph énd

let R denote the subgraph of G determined by the edges incaearfiace in X and

to a face inX. Then every vertex of R has even degree and R has an odd humber
of edges. Hence, R contains an odd cycle.

Proof Pick some vertex of G. Let ey, ..., gg denote the edges @ incident
to v listed in clockwise order and, for 4 i < d, let fj be the face of5 incident
to bothg ande.; (we leteg.; = e1). Each facef; belongs either tX or to X.
Because there is an even number of switches betdeand X when one goes
clockwise around, the degree of in Ris even. From this, we infer th&can be
decomposed into edge-disjoint cycles. SiKceontains an odd number of vertices
of T, that is, an odd number of odd faces@fsubgrapR has an odd humber of
edges. The observation follows. ad

Lemma 2 A subsetW of YG) is a transversal of G if and only if the subgraph of
the face-vertex incidence graph"Gnduced by WU F (G) contains a T -join, that
is, every component of the subgraph has an even number afeseof T.

Proof We first prove the forward direction. Suppose, by contradictiort,sbme
connected componeit of the subgraph o6& induced oW U F (G) contains an
odd number of vertices af. Thend(X) is aT-cutinG*. Consider the edges &
incident to a face itX and to a face iX. These edges determine a subgriuli G.
Let e be an edge dR. None of the endpoints @&belongs tdV because otherwise
all the faces incident to this endpoint would beXnande would not belong to
R, a contradiction. Therefor® is vertex-disjoint from. By Observation 2, we
know thatR contains an odd cycle. SW is not a transversal, a contradiction.
To prove the backward direction, consider an odd cgcémd aT -join Jin G+
covering some vertices 8 and no vertex o —W. LetY be the set of faces of
G contained irC and letX = Y UW. Becaus€&€ is odd,X contains an odd number
of odd faces, that is, an odd number of element$ .dBecauseT | is even, there
is an odd number of elements ®fin X too. It follows thatJ contains a pati®
from an element of in X to an element of in X. Letv be any vertex oz onP
incident to a face irX and to a face irX. Thenv is a vertex ofC covered byd. In
other wordsW intersect<C. ThereforeW is a transversal. a

3 The Edge Case

In this section, we give a short proof that a minimum odd cyclecedgnsversal
has size at most twice the size of a maximum packing of edgehuli®dd cycles.
This result was recently proved by &rand Voss [11]. Their proof is quite long
(about 10 pages). Below, we give a concise proof. To be fair, westhat the result
of Lovasz used below in our proof is implicitly contained indkand Voss' proof
[11]. As with their proof, our proof relies on the Four Colour Theorf@ni6].
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Theorem 1 (Kral and Voss [11])The minimum size of an odd cycle edge trans-
versal of G is at most twice the maximum size of an odd cycle pdgking in
G.

Proof Let T and v respectively denote the minimum size of an odd cycle edge
transversal ofs and the maximum size of an odd cycle edge packinG.iThe
theorem trivially holds ifv = 0. Assume thav > 0. By Lemma 1, the minimum
size of aT-join in G* equalst. By Proposition 2 and Observation 1, there is a
laminar family.# of 21 subsets o/ (G*) such tha® (%) = {6(X) : X € F}isa
2-packing of inclusion-wise minimdi-cuts inG*. (Recall that minimall -cuts in

G* correspond to odd cycles B.) Without loss of generality, we can assume that
the outer fac® of G is odd and that no member &F containso.

Let H denote the graph o in which X andY are adjacent whenever the
correspondingr -cuts intersect. We claim th&t is planar. The claim obviously
implies the theorem because, by the Four Colour Theokémmas a stable set of
size at leasfV (H)|/4 = 21/4 = 1/2. This implies the desired inequality< 2v.

In order to show thaH is planar, it suffices to show that every bloek of H

is planar. Let#’ denote the vertex set df’. Since.# is laminar,.#’ is also
laminar and the se¥’ partially ordered by inclusion is a forest, i.e., every point is
covered by at most one point. DétY andZ be three distinct elements ¢f’. The
following cannot occur: (X CY C Z, (i) X CY andY NZ = @. Indeed, if (i)

or (ii) holds then ever)X—Z path inH' intersects becausé&(.%) is a 2-packing.
This contradicts our assumption thditis a block ofH. Then.#' partially ordered
by inclusion is either a forest of height O (that is, an antichama tree of height

1. In both cases, it is easy to construct a planar drawingifofrom G. Each
element of#’ determines a cycle in the plane graBhin the first case, we pick
any point in the bounded face of each of these cycles and cothreepoints by an
arc whenever there is an edgeHi between the two corresponding elements of
Z'. This can be done in such a way that the resulting graph is pl@harsecond
case is similar. ad

4 Special Classes

In this section we show that the minimum size of an odd cycle éxgttansversal
is at most twice the maximum size of an odd cycle (vertex) parkina collection
of special classes of planar graphs. The techniques we gekiele will then be
applied in the next section to give our main result for genermhat graphs. For
technical reasons it will be useful to assume fBas signed. Asignedgraph is a
graph whose edges are labetatt (' —") or even(*+’). In a signed graph, a cycle
(or more generally a subgraph) is said toduakl if it contains an odd number of
odd edges andvenotherwise. Similarly, a face of a plane signed graph is said to
be odd if its boundary has an odd number of odd edges, counting britiges.
Otherwise, the face is said to kbgen A signed graph is said to bdealancedif it
has no odd cycle. Odd cycle transversals and odd cycle paciimegdefined as
in the unsigned case. Henceforth, in order to avoid unnecesgagiitiens, we
abbreviate odd cycle vertex transversal and odd cycle vertexrgastspectively
astransversalandpacking We denote byr(G) andv(G) the minimum size of a
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transversal of5 and the maximum size of a packing @ respectively. Finally,
we always assume th&has no loops or multiple edges.

4.1 When All Odd Faces Mutually Intersect

We begin this section by stating a technical lemma whichsiegmdling odd faces
of 3-connected planar graphs. We omit its proof because itislatd.

Lemma 3 Let G be a3-connected plane graph. Then every face of G is bounded
by a cycle. For any two faces f and df G whose respective boundaries C and
C’ intersect, the following holds. Either C and §hare exactly one vertex, or two
adjacent vertices and the edge between them. ad

The next result will be used as a base case to prove our main apgaitex
min-max result.

Proposition 3 If every two odd faces of G have intersecting boundaries, @Gen
has a transversal of size at madst

Proof Note that the boundaries of every pair of odd faceS aftersect if and only
if every two odd cycles o6 intersect, that is, if and only i#(G) < 1. We prove
by induction on the number of vertices@fthatv(G) = 1 impliest(G) < 2. This
clearly implies the proposition. & has at most three vertices, then the proposition
trivially holds. Now assume th& has at least four vertices. We claim that we can
also assume th& is 3-connected.

If Gis not 3-connected, then it has a cutset consisting of twooesti andv.
Let U be a connected component@f— u — v, let G; denote the subgraph &
induced orJ U {u,v} and letG, = G—U. If both G; andG; are unbalanced then
{u,Vv} is a transversal because we hay&) = 1. By symmetry, we can assume
thatG; is balanced. Then all-v paths inG; have the same parity. L&' be the
graph obtained fron®, by adding an edgewith endpointss andv that is labelled
odd if all v paths inG; are odd, and even otherwise. We don’t add eglifjéhere
is already an edge betweerandv or if there is nou-v path inG;. Becauses'
has less vertices thaBandv(G') = 1, there is a transversal of cardinality 2Gh
The same two vertices form a transversalanThis concludes the proof of our
first claim.

From now on, we assume th@tis 3-connected. We claim that if every vertex
of G is incident to at most three odd faces, therhas a transversal of size 2.
Indeed, if it is the case then consider thtersection graptof the odd faces, that
is, the graph whose vertices are the odd faces ahd whose edges are the pairs
ff’ where f and f’ have a common incident vertex. The intersection graph is
complete because any two odd cyclesGiave a common vertex. Any standard
drawing of G™ can be modified to obtain a drawing of the intersection graph, so
the latter is planar. It follows tha has either 2 or 4 odd faces. If there are 2 odd
facesf; andfy, letv be a vertex incident to both and f,. By Lemma 2{v} is a
transversal. If there are 4 odd fachs fo, f3 and f4, let v be a vertex incident to
both f; and f, andw be a vertex incident to botfs and f4. By Lemma 2 {v,w}
is a transversal. This concludes the proof of our second claim.
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Let nowv be a vertex which is incident to at least four odd faces, §ayf»,
fz and f4, in counterclockwise order. By Lemma 3, the boundarie§ aihd fi
share exactly one vertex, namelyfor i = 1, 2. If all the odd faces are incident to
v, then{v} is a transversal by Lemma 2 and we are done. So we can assume there
is an odd facef that is not incident tos. Let f/ be an odd face distinct fron
which is also not incident tw. If there is no such face, thev,w} is a transversal
(again by Lemma 2), wheng is any vertex incident to both and f;.

Consider the subgrapH of Gt obtained by adding to the subgraph®f
induced orv, fy, fp, f3 and f4 four paths of length two fronf to f1, fo, f3 and
f4 respectively. Leff, u;, fj be the vertex sequence of théh path, and le =
{ug,uz,us3,us}. We chose the paths in such a way that the number of vertices in
U is minimum (we maximize the intersections between them). Inratioeds, we
ask thatH be an induced subgraph &". Now consider any standard drawing
of GT. Where is the vertex; corresponding to the odd fadé? It has to lie in
one of the faces dfl. Moreover, there is a path of length 2@t from f’ to each
of the fi’s. Each path avoids becausef’ is not incident tov. Because thdi’s
are arranged aroundin counterclockwise order, Lemma 3 implias # us and
Uy # Ug. So it suffices to consider the following three cases (see Figure 1

\%i \%i \%i
Ug ug
ui
Vi, u Vi, 1) V7]
Uj=4 U|=3 Uj=2

Fig. 1 SubgrapH in each of the three cases

Case 1|U| = 4. W.L.o.g.,v¢ lies in the face oH bounded by the cycle with
vertex sequence, vy, , Uz, Vs, Uz, V,, V. Then there cannot be a path of length 2
avoidingv from f’ to f3 in G*, a contradiction.

Case 2|U| = 3. W.l.o.g., we assume thag = us. As in Case 1, we see that
there is no way to add; to the standard drawing ¢ (see Figure 1) in such a
way thatf’ has a path of length 2 avoidingo everyf; in G*. For instance, if/4:
lies in the face bounded by the cycle with vertex sequenes, uy, Vs, Us, Vi,, V,
then there in no such path frofito f,, a contradiction.

Case 3|U| = 2. W.l.o.g., we assume thaf = u, anduz = us. Vertexvy can
be in the face bounded by the cycle with vertex sequeneg, uy, v, Uz, Vi,, vV Or
in the face bounded by the cycle with vertex sequenee,, Uy, Vs, Us, Vi, V. In
both cases, it must be adjacent to botlandus. By Lemma 2, we see that, u; }
is a transversal ob. O
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4.2 When Some Face Intersects Every Odd Face

In this section, we consider the graphs that have some faceavidmamdary inter-
sects the boundary of every odd face.

Observation 3 Let G be a4-connected plane graph and let y be a vertex of G not
incident to the outer face. If there are two distinct vertigez on the boundary of
the outer face and two distinct faces f and g different froendhiter face such that

f isincidentto x and g is incident to z, then x and z are neiginbon the boundary

of the outer face. Furthermore, the vertices x, y and z deter@triangular face.

Proof Let o denote the outer face. There exists a polyBan R? included inGU

oU f UgintersectingG precisely inx, y andz. By the Jordan Curve Theorem, we
know that all paths ofs from a vertex in the bounded region&f \ P to a vertex

in the unbounded region &? \ P go throughx, y or z. The situation is depicted in
Figure 2. Ifx andzare not adjacent on the boundary of the outer face, then the two
neighbours ok on the boundary of the outer face lie in different region&&f, P.
HenceX = {x,y,z} is a cutset of size 3 i, a contradiction. Similar arguments
show thatxy andxz are edges o6. The last part of the observation follows from
the fact that triangles in 4-connected plane graphs alwaysigie faces. O

Fig. 2 X = {x,y,z} is a cutset

Proposition 4 Assume G ig-connected, has at least five vertices and is such that
the boundary of the outer face intersects the boundary of/edd face. Then the
minimum size of a transversal of G is at most twice the maxisizenof a packing

in G.

Proof We assume thds is not balanced. Otherwise, the result trivially holds. The
hypotheses severely restrict the way face boundaries inteesgcbéher. Consider
two distinct odd faced andg different from the outer face. By Lemma 3, the
boundaries of face§ andg intersect in a vertex or in a common edge.

If the boundaries of andg share a unique vertgx then eithey is incident to
the outer face (see Figure 3.a), or the following occurs. By hygsith the bound-
aries off andgintersect that of the outer face. Lettingndz denote the respective
intersection vertices, which are distinct because otherwesbdlindaries of and
g would share more than one vertex, we infer from Observation 3xhaandz
determine a face adjacent to the outer face (see Figure 3.b). Murdéecaus&



Approximate Min-Max Relations for Odd Cycles in Planar Grap 11

is 4-connectedx is the only vertex incident to both and the outer face, armis

the only vertex incident to bothand the outer face. We refer to the trianglexpn

y andz as ajunctional triangle Note that junctional triangles can be even because
Gis signed.

If the boundaries of andgintersectin a common edgg€see Figure 3.c), then
one of the endpoints @&is on the outer face and the other is not. This follows from
Observation 3. Moreovef, andg cannot both have a common incident edge with
the outer face because otherwi3e- K4, contradicting the fact thad has at least
five vertices.

™ AR P

a. b. C.
Fig. 3 The three ways the boundariesfondg can intersect

Enumerate the vertices of the outer face in clockwise ordes,as, ..., V.
For the sake of simplicity, letg = v, andvy 1 = vi. Let| be the set of indices
such that there is a junctional triangle containing the egige,. For each €1,
we letu; be the vertex of the junctional triangle incident to the edgevivi 1 and
opposite tae, and we letw; be any point in the interior of the edgeFor each odd
facef different from the outer face, we define an Arccontained in the frontier of
the outer face, as follows. If the boundaryfointersects the boundary of the outer
face in an edg® v 1, then we letAs be the edge;vi 1. Otherwise, the boundary
of f intersects the boundary of the outer face in a vevtelt f is incident neither
to u_1 nor tou; then we letAs be the poinfv;}. If f isincident tou;_; and not to
u; then we letAs be the part of the edgg_1v; betweerw;_; andv;. If f isincident
to u; and not tou;_; then we letAs be the part of the edgev;,1 betweernv; and
wi. Finally, if f is incident to bothy; andu;_1 then we letAs be the arc linking
wi_1 andw; on the outer face and containing By construction, two odd faces
f andg different from the outer face are incident to some common vertemdf a
only if their corresponding aros andAg have a nonempty intersection.

Let H denote the graph whose vertices are the odd faces different from the
outer face and whose edges are the plgrsuch thal\s NAg # @ andf # g. Then
H is a circular arc graph. The maximum size of a packiniis precisely equal
to the maximum size of a stable seHnthat is, we have (G) = a(H). Note that,
by Lemma 2, any set of vertices on the boundary of the outer faeesiecting the
boundary of each odd face is an odd cycle transversal. We conb&léllowing
two cases.

Case 1 There is some point on the boundary of the outer face that is not in
any arcA;. In this caseH is an interval graph. L&tV be a minimum cardinality
subset of{vi : 1 <i < n}U{w :i €1} meeting all the arcs. By Dilworth’s chain
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partitioning theorem [3], the complement of an interval grépis perfect, hence
we have|W| = a(H) = v(G). Now replace eack; € W by v; andv;;;. LetW’
be the resulting set of vertices Gf ThenW’ is a transversal o of cardinality at
most 2W|. In other words, we have(G) < 2v(G).

Case 2The arcsAs cover the whole boundary of the outer face. It follows that
for each edge = vivi 1, the facef; incident toe and different from the outer face
is either an odd face or an even junctional triangld; I§ odd, then we let = f;.
Otherwise, we let; be the odd face incident tqu;. As above,u; denotes the
vertex of the junctional triangle incident towhich is opposite te. Thus, every
edge of the outer face has a corresponding odd face. Note tthet Kfoundaries
of gi andg; intersect theme {j —1,j+1} ori = j. Soifnis even, then we have
1(G) < 2v(G) becausdvy, ..., vy} is atransversal of sizeand{g1,ds,...,0n-1}
yields a packing of siza/2. Now assume that is odd. LetH’ be the subgraph
of H induced by the faceg. By what precedes, we know that the graghis
also a subgraph of the odd cycle with vertex sequepce. ., gn, g1. If H' is not
connected, then it has a stable set of gize- 1)/2 and we get (G) < 2v(G) as
before. For the rest of the proof, we assume tthais connected. We claim that
either allf;’s are odd faces or aft's are even junctional triangles. Otherwise, there
is some index such thatf; is an even junctional triangle arfg. ; is an odd face.
In this case, the boundariesgfandg; 1 cannot intersect. So our claim holds.

If all fi’s are odd faces then consider vertexIf {v,...,vn} is a transversal
then we haver(G) < n—1 < 2v(G) becauseH’ has a stable set of size —
1)/2. Otherwise, there is some odd fatécident tov, and to no othew;. Then
{f}U{f2, f4,..., fn_1} yields a packing of sizén+1) /2. Hence, we have(G) <
2v(G). BecauseH’ is connected, if allfi's are even junctional triangles then the
odd faces of5 are exactly the outer face and the fagefori=1,...,n. Itis easy
to see thafus, Vs, Va,...,Vn} is a transversal of size— 1. Becausél’ has a stable
set of sizeln—1)/2, we haver (G) < 2v(G). This concludes the proof. O

We need a slight generalization of Proposition 4. Consideresaref of G,
which we refer to as aenter The odd faces o6 whose boundary intersects the
boundary of the center are called tlaegets(aroundf). In particular, if f is odd
thenf is itself a target. Aocal transversals a setW of vertices ofG satisfying
the following properties:

(i) every target is incident to some vertex\Wf
(i) at most one vertex ddV is not incident to the center;
(i) if ue W is notincident to the center, theris incident to exactly two targets.

The proof of Proposition 4 in fact shows:

Lemma 4 Assume G igd-connected and has at least five vertices. Let f be a face
of G acting as center. Then the minimum size of a local trasssvef G is at most
twice the maximum number of boundary-disjoint targets in G. ad

4.3 When Odd Faces Are Disjoint

We begin this section by recasting the minimum transversal badraximum
packing problems entirely in terms ®fjoins andT-cuts in the face-vertex inci-
dence graph. This slight change of terminology simplifies tli®fs and enables
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us to state our results with more generality. Hetlenote any connected bipartite
graph with bipartition{ A, B}, and letT be any even subset & Thewidth of a
T-join in H is the number of vertices @it covers. Thdringe of aT-cut6(X) in

H is the set of vertices oA which have a neighbour iX and a neighbour iix.
Note that the minimum width of @-join in H is at least the maximum number of
fringe-disjointT-cuts inH. This is due to the fact that evefy-join covers some
element in the fringe of every-cut.

We now relate the above definitions to odd cycle vertex transhgessa pack-
ings in plane signed graphs. Consider the case wHeigthe face-vertex inci-
dence graplG™ of the plane signed grapB, setA is the vertex set o6, setB
is the face set o5, and sefT is, as before, the set of odd faces@fBy Lemma
2, everyT-join in H defines a transversal &, namely, the vertices ok it cov-
ers. Reciprocally, to every transver¥dithere corresponds B-join in H which
covers some vertices &% and no vertex oA\ W. So the minimum width of a
T-join in H equals the minimum size of a transversalfFurthermore, there is
a correspondence betwe&ncuts inH and odd cycles irs. By Observation 2,
everyT-cut inH determines a subgraph & which contains an odd cycle. The
vertex set of the subgraph is the fringe of fheut. Reciprocally, every odd cycle
in G determines & -cut inH whose fringe is the vertex set of the cycle. Hence the
maximum size of a collection of fringe-disjoifit-cuts inH equals the maximum
size of a packing irs. We use the following notation: let denote the maximum
size of a collection of fringe-disjoir-cuts inH, let T denote the minimum width
of aT-join in H and let/ denote the minimum length of Bjoin in H.

Proposition 5 Let H be any connected bipartite graph with bipartitioh, B} and
let T denote any even subset of B. Assume that the shortbalipttnce d (t,t")
between any two distinct elements t ahdftT is at leas2c for some ¢ 1. Then
we have

v>

NI =

(= [T|+1) > (1-1) r.

Proof Let.# denote a laminar collection défsubsets oAU B such thatd(#) =
{6(X) : X € #} is a collection of edge-disjoint-cuts inH. Such a laminar col-
lection of T-cuts is guaranteed to exist by Proposition 1 and Observation 1.

We claim that wheneveX, Y andZ are three distinct elements gf such that
XCYCZorXCYandYNZ= g, thenT-cutsd(X) andd(Z) are fringe-disjoint.
It suffices to consider the first case. Suppose there exists mneeia € A which
belongs to the fringes ok andZ. In particular,a has a neighbob in X and a
neighborb’ in Z. If a€ Y thenabl € 6(Y)Nd(Z), a contradiction. la € Y then
abe 3(X)Na(Y), a contradiction. So our claim holds.

The setZ partially ordered by inclusion is a forest. Its leaves are disjoint
subsets oAU B such that each of them has some common elementiwitkence,
Z has at mosfT| leaves. Note that the claim above implies that two nodesef th
forestX andY are fringe-disjoint unlesX is the parent o¥, Y is the parent oK,
X andY are siblings oX andY are roots.

Rank the children of each node of the forgstarbitrarily and order its roots
arbitrarily also. Let#’ denote the subset a¥ formed by all nodes which are
ranked first in their respective ordering. Lettihgdenote the number of leaves of
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Z, we claim thatZ’ contains exactly.#| — A + 1 elements. Indeed, every non-
leaf node in# has exactly one child that is igf’. Conversely, every node i’
except one (the first root of7) is the first child of a non-leaf node. Our second
claim follows. Becausa < |T|, we have.%'| > |.#| — |T|+1.

To obtain a packing of fringe-disjoifit-cuts, colour the elements oF’ black
or white in such a way that no parent and child have the sameicake., whenever
X is the parent off thenX andY have different colours. In other words, colour
the subgraph of the Hasse diagram®finduced on%’ with two colours. Let
F" denote the biggest of the two colour classes. Thef”) is a collection of
fringe-disjointT-cuts of size at leasy(|.Z| — |T|+1) = 3(¢— [T|+1).

Note that every minimum lengtfi-join in G can be thought of as a perfect
matching ol whose edges have become edge-disjoint shortest pathddence

(is at Ieast‘lz‘ -2c. Note also thart is at most% because the width of arly-join
is at most half its length. It follows that we have

1

Ve ([T > (-T2 (1—i) L (1—i) r.

O

Corollary 1 If the boundaries of the odd faces of G are pairwise disjoiattthe
minimum size of a transversal of G is at most twice the maxisiz@of a packing
in G.

Proof This follows directly from Proposition 5 withl = G*, A=V(G), B =
F(G) andc = 2. O

5 Combining the Local and Global Approaches

We are now ready to prove our result for general planar graphs. Weamilbine
the local and global approaches we have described to give darapproximate
min-max result. Towards this end, letG) denote the minimum size of a collec-
tion of faces ofG such that the boundary of every odd face®fntersects the
boundary of some face in the collection. The following two leasnare simple
and we omit their proofs. Lemma 5 implies th&G’) < p(G) for any subgraph
G of G.

Lemma5 Let G be a plane signed graph wig{G) =r, and let f, ..., f be a
collection of faces such that for every odd face f there isnaex i such that the
boundary of fintersects the boundary of f. Then we ha{(& — e) < r for each
edge e. Moreover, we haygG —e) <r —1if edge e is incident to; and f; for
some distinct indices i and j. O

Lemma 6 Let G be a plane graph and X be a cutset of G with at most three ver
tices (we allow the case ¥ ©). If G has no cutset with fewer thdK| elements,
then there exists a polygon®R? intersecting G only in vertices and such that X
is precisely the intersection of P and G and each regidR%{ P contains a vertex

of G. O
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The next lemma, combined with Lemma 6, will allow us to focugoaphsG
which are 4-connected.

Lemma 7 Let G be a plane signed graph, let®R? be a polygon intersecting

G only in vertices or along entire edges, and leeXP NV (G). Assume that each
region R and R of R? \ P contains at least one vertex of G. Then X is a cutset in
G. Fori= 12, let G be the part of G contained in the closure of regign Fhen

we havep(Gy) +p(Ge) < p(G) +2.

Proof Let {fq,..., f;} denote a collection of = p(G) faces ofG such that the
boundary of every odd face & intersects the boundary of some face of the col-
lection. Without loss of generality, we can assume that thexesame (possibly
distinct) indicesr; andr, with ry <r, such thatfy, ..., f;, are contained iRy,
andfy,, ..., f; are contained if,. Fori = 1,2, letg; denote the outer face @;.
Then the boundary of every odd face®f intersects the boundary of some face
in {fq,..., fr; }U{01}. Similarly, the boundary of every odd face @} intersects
the boundary of some face {ff,,, ..., fr} U{g2}. The lemma follows. O

Our main result, the inequality(G) < 10v(G), will be derived as a corollary
of the next result. Before going on with proofs, we mention that kekt that
this result is not tight. In particular, we do not know any exaengl a graph with
1(G) > 2v(G). We believe that (G) < 2v(G) holds for all planar graphs (which
of course would be a tight result).

Theorem 2 For every unbalanced plane signed graph G, we have
1(G) < 7v(G)+3p(G) —8.

Proof LetG be a counterexample witkl (G)| as small as possible, and e, . . .,

f,} denote any minimum collection of faces@fsuch that the boundary of every
odd face ofG intersects the boundary of some face in the collection. Natevtie
haver = p(G) > 1. We claim: (1)G has a packing of size 2 and no transversal
of size at most 9; (2%5 is 4-connected; (3) the shortest path distagige( i, f;)
betweenf; and f; is at least 8 whenever# j.

Proof of Claim (1) If G has no packing of size 2, then by Proposition 3, we have
T(G)<2=7+3-8<7v(G)+3p(G) -8,

a contradiction. S& has a packing of size 2, that is, we hax&) > 2. Because
p(G) > 1, graphG has no transversal of size at most 9, that is, we l&@ > 9.
Otherwise, we have

1(G)<9=7-243-8<7v(G)+3p(G) -8,
a contradiction. So Claim (1) holds.

Proof of Claim (2) By the previous claimG has at least 10 vertices. Therefore, to
prove the present claim, it suffices to prove Bdtas no cutset of size 3. However,

in order to use Lemma 6 we need to show tBais 3-connected; we leave this

straightforward task to the reader. Now assume @at 3-connected. Suppose

that G has a cutseX consisting of three vertices y andz LetY = {y,z}. By
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Lemma 6, there exist subgrapBs andG; of G and a polygor® c R? determining
two regionsR; andR; in the plane such tha& intersectss precisely inx, y and
z, andG; equals the restriction db to the closure of regioR;, fori = 1,2. By
modifying P if necessary, we can then assume tRantersectsG exactly along
the subgraph o5 induced byX. Now it suffices to consider the following two
cases (see below). Indeed@i — X andG, — X are both balanced the®d has a
transversal of size at most 3, contradicting Claim (1).

Case 1 NeitherG; — X nor G, — X is balanced. It follows that neith&; — Y
nor G —Y is balanced. If we have(G) > v(G; —Y) 4+ v(Gz —Y) then Lemma
7 implies

1(G) <2+1(G1—Y)+1(G2—-Y)
< 24 7V(G1—Y)+3p(GL—Y) —8+7v(Ga—Y)+3p(Go—Y) —8
< 7v(G) +3p(G) + 2+ 6— 16— 7v(G) +3p(G) — 8,

a contradiction. Else, we hawgG) = v(G1 —Y) +v(Gz—Y) — 1. It follows that
every maximum packing db; — Y and every maximum packing & — Y hit the
vertexx. So we have/(G1 —X) =v(G1—Y)—1,v(G,—X) =v(G2—Y)—1and
V(G) = v(G1 — X) +v(Gz — X) + 1. Therefore, we have

1(G) < 3+1(G1—X)+1(G2—X)
<3+ 7V(Gl—X) —|—3p(G1—X) —8—|—7V(G2—X) —|—3P<G2—X) -8
<7v(G)+3p(G)+3-7+6—-16<7v(G)+3p(G) — 8,

a contradiction.
Case 2G; — X is balanced an&, — X is not balanced. 165, is not balanced,
then we have/(G) > v(G, — X) + 1 and hence

7(G) <3+ 1(G2—X) <3+7v(Gy—X)+3p(G2—X)—8
<7 (G)+3p(G)+3-7-8<7v(G)+3p(G) -8,

a contradiction. S@, is balanced. Consider the gra@) obtained fromG; by
adding a triangle o, y andzto G,. We do not add an edge if it is already present
in Gy. Since we can easily modif to get a drawing of5,, we can regar@), as

a plane graph. Consider any two distinct vertioggin X = {x,y,z}. Becauses;

is balanced, all—v paths inG; have the same parity. We let the parity of the edge
uvin G, be the parity of all—v paths inG;. Note that we have(G) < 1(G,) and
v(G,) < v(G). Moreover, we have(G,) < p(G), as we now prove. Sindd is
3-connected, there is a vertexn G; — X sending three independent pathscto

y andzin G;. By Lemma 5, if we delete fron® all edges which are contained
in G; except those which belong to one of the three paths, the nreggtaphG’
satisfiep(G') < p(G). Since the triangle ok, y, zdetermines an even face®j,

we havep(G,) < p(G'). Hence, we have(G,) < p(G), as claimed. It follows
that we have

1(G) < 1(Gy) < 7v(Gy) +3p(Gy) ~8< 7v(G) +3p(G) - 8,

a contradiction. In conclusion, Claim (2) holds.

1 Moreover, as indicated by an anonymous referee, we h@e= 1(G,) andv(G,) = v(G).
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Proof of Claim (3) Suppose thalg+ (fi, fj) < 6 for some distinct indicesand j.
Let X denote the set of vertices &f on a shortest path betwednand f; in Gt.
SoX contains at most three vertices. By Lemma 5, we I@— X) < p(G) — 1.
Becausés — X is nhot balanced, we have

1(G) < 3+ 1(G—X) < 3+ 7v(G—X) +3p(G—X) —8 < 7v(G) +3p(G) —

a contradiction. So Claim (3) holds.

Now we would like to apply Lemma 4 around each face in the ctiiac
{f1,..., fr}. So each facd; will perform as a center. The targets arouficare
the odd faces o6 whose boundary intersects the boundaryf oBy Claim (3),
wheneveg is a target aroundi andg’ is a target around; with i # j, the bound-
aries ofg andg’ are disjoint. By Lemma 4, for each cenftigthere exists a packing
of odd cycless; formed by target boundaries, and a local transvékbsalhose size
is at most twice the size of packir. Let 6iocal denote the union of packingg,

., Gr. Then%iocal is a packing. .

Now letH = G, let A=V(G) and letB = F(G). Consider the graph ob-
tained fromH by contracting, for X< i <r, all vertices ofH at distance at most 2
from f; to a single vertexf;. Note thatH is still bipartite, with blpartltlon{A B}
where

A=A\{acA:dy(a fi) <2 for some with 1 <i<r},
8 =B\{beB:dy(b, fj) <2forsomewith1<i<rju{fi:1<i<r}.

Let T denote the set of thosk’s that correspond to centeffs which have an
odd number of targets around them. Bds an even subset &. Let J denote

a minimum lengthT -join_in H. Then, by Proposition 5, there is a collection of
fringe-disjointT-cuts6(.%) in H such that

8(F)| = 5 (IJ\—IT\+1) (IJI—f+1);‘\J|<2|5( F)l+r-1

This collection of fringe-disjoinf -cuts yields a packing of odd cyclégiobal in
G, of the same size. Thf?-join J defines a set of edgeljopal in H = G*, as
follows. Every edge off that belongs tdH is kept as it is. Every other edge of
Jis of the formvf; and is replaced by any shortest path betweand f; in H.
Because we havey (fi, f i) >4 whenevei # j and becauséis the edge-disjoint
union of shortest paths between pairs of verticed pfhe length ofJgiobal is at
most twice the length of.

For each local transvers#, let J; denote the set of edges of the face-
vertex incidence grapB™ such thawv € W, andf is a target around; incident to
vor f = fi. Let Joca denote the union aly, ..., Jr. The union ofJioca andJgiopal
contains ar-join, sayJ. Indeed, by the fact that eadl{ is a local transversal
and by construction off, each component of the subgraph@f defined byJ
contains an even number of elementsToBecause the width aof is at most the
width of Jioca plus the width oflyona and because the width offajoin is at most
half of its length, the width of is at most

r
1
E ‘\N|| + é ‘ngobal‘ < 2|<5Iocal| + 2’%globaﬂ +r—-1< 4V<G) + p(G) -
i=
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By Claim (1), we havey(G) > 2. Therefore,
1(G) <4v(G)+p(G)—1<7v(G)+3p(G) —8,
a contradiction. This concludes the proof of the theorem. a

Because(G) is at most the size of any inclusion-wise maximal collectidn o
boundary-disjoint odd faces iB, which is in turn at mosv(G), we obtain our
main result from Theorem 2.

Corollary 2 For every plane signed graph G, we hau&) < 10v(G). ad

6 A 1l-approximation algorithm for packing odd cycles in planar graphs

We now briefly discuss how the results proved in the previousaecimply a
11-approximation algorithm for the problem of finding a maximurtiemtion of
vertex-disjoint odd cycles in a planar graph.

At the heart of the algorithm lies a recursive procedure with theofioig
characteristics. The input of the procedure is an unbalances gigned graph
G and a collection# of faces whose boundaries intersect the boundary of ev-
ery odd face ofG. The procedure returns a packi@gand a transversaV such
that|W| < 8|%| + 3|2#| — 9. (Notice the change in the constants with respect to
the original inequalityr < 7v 4+ 3p — 8 proved in Theorem 2.) The main algo-
rithm starts by finding in the input gragh an inclusion-wise maximal collection
of odd faces with vertex-disjoint boundarigg&’ and then calls the recursive pro-
cedure forG and s#. As above, let¢ andW respectively denote the packing
and transversal returned by the proceduréélf < |77| then% is replaced by
the packing determined by?’. Now |.77’| < |%’| and hencdW| < 11|%|, which
implies|¢| > & - v(G).

In order to describe the recursive procedure we simply transposedbeqs
Theorem 2. Thus the first action carried out by the procedure is toetisaiG has
a packing of size 2 and no small transversal (say, of size at nf@sOtherwise
the procedure returns a packing of size 1 or 2 (if one exists) andnamuin
transversal. This step can be done efficiently. Finding a pgoiif size at most 2
in a planar graph is easy. Moreover, there exists a linear tigaighm computing
a minimum transversal in a planar graBtwith 7(G) < 10, see [5] (see also [15]
for a quadratic algorithm in general graphs). Then the procedureshiethe
graph is 4-connected. If not, a cutset of size at most 3 is foundrengrocedure
recurses on one or both sides of the separation, modifginagd.># according to
the situation. An important difference with the proof of Theoreis that if X is
any cutset (of size at most 3) such tliat— X andG; — X are both unbalanced,
the procedure always recurses®@n— X andG; — X and adds all the vertices of
X to the two transversals found to build a transvers&bofhis is the reason why
we obtain a 11-approximation and not a 10-approximation.

If G has a packing of size 2, no small transversal and is 4-connebtegro-
cedure continues as follows. As before, we call the face®ithe centers. Ifitis
the case that two centers are at a distance at most 6 to eachtioghegrtices in a
shortest path linking them are removed fréidistances and paths are considered
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in the face-vertex incidence graph). The collecti#fiis modified and the proce-
dure recurses. Otherwise, the centers are such that the distanezbeany pair
of them is at least 8. Then the procedure finds a local packinghdreach center.
The union of these i%j,ca. INn Section 4 we showed that finding a local packing
is essentially the same as finding a maximum stable set intarvad graph (see
Proposition 4), which can be done in polynomial time. Then tteeg@dure con-
structs a global packing. In Section 4.3 we showed how a paairig-cuts in
a particular subgraph of the face-vertex incidence graph yiefuscking of odd
cycles inG of the same size. This packing is the one we @glal. As the face-
vertex incidence graph is bipartite, optimal packingsTetuts can be found in
polynomial time in bipartite graphs [18]. Finally, the procedunel§ a transversal
W using a combination of interval graph clique covering dngbin techniques.
It returns the largest packing @foca and¢giona, together with the transversal.
This concludes the description of our 11-approximation algoritor the packing
problem.
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