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Abstract. We show how to transform any inequality defining a facet of some
0/1-polytope into an inequality defining a facet of the acyclic subgraph polytope.
While this facet-recycling procedure can potentially be used to construct ‘nasty’
facets, it can also be used to better understand and extend the polyhedral theory
of the acyclic subgraph and linear ordering problems.

1. Introduction

Nowadays, it is widely recognized that linear programming relaxations of 0/1
programming formulations are an important tool in the design of algorithms for
solving combinatorial optimization problems. Among all possible valid inequal-
ities, the inequalities which define facets of the corresponding 0/1-polytope are
often the most coveted because they are, in the logical sense, the strongest. The
best we could possibly hope for is to know all such inequalities for some NP-hard
problem. This utopic dream leads to the following question: how can we find all
the facets? Most people in the discrete optimization community think that this
task is impossible whenever the underlying problem is NP-hard. But how can we
prove such a thing?

A first possibility is to look for negative computational complexity results con-
cerning the facets of polytopes associated to NP-hard problems. By the equiva-
lence of optimization and separation [25], if a complete linear description of such
a polytope could be found it could not be algorithmically tractable as regards
separation, unless P = NP. Papadimitriou and Yannakakis [33] have introduced
a new complexity class, denoted by Dp, which contains both NP and co-NP and
captures the complexity of many natural decision problems, such as the problem
of recognizing if a given inequality defines a facet of some 0/1-polytope arising in
combinatorial optimization. They proved that the problem of recognizing facets
of the stable set polytope is complete for the class Dp. Later, Papadimitriou and
Wolfe [32] proved the same result for the traveling salesman polytope.
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A second possibility, the one we focus on in this article, is to seek more direct,
geometric evidence that finding all the facets is difficult. We are lacking a def-
inition of what we could call the ‘geometric complexity of a 0/1-polytope’, that
is, a measure of how difficult it is to determine and describe all the facets of a
0/1-polytope. Nevertheless, there are two natural quantities of geometric nature
associated to any full-dimensional 0/1-polytope that we think are closely related
to this elusive concept: the number of facets and the maximal absolute value of a
coefficient in a reduced facet-defining inequality. A linear inequality is said to be
reduced if the greatest common divisor of its coefficients equals 1. (Throughout
the text, we always assume that linear inequalities have integral coefficients.)

Bárány and Pór [7] showed that 0/1-polytopes in R
d can have as many as

(γd/log d)d/4 facets for some positive constant γ. Their result relies on a random-
ized construction. Using similar techniques, Gatzouras, Giannopoulos and Mark-
oulakis [21] improved Bárány and Pór’s lower bound to (γ′d/log2 d)d/2 for some
positive γ′. It is an important open problem to find a deterministic construction
of 0/1-polytopes with many facets. Of course, it would be even more interesting
to show that some famous 0/1-polytope such as the cut polytope has many facets.
However, the latter question seems out of reach of present techniques.

It follows from results of Alon and Vũ [1], see Ziegler [40], that there are 0/1-
polytopes with huge facet coefficients. More precisely, there are full-dimensional
0/1-polytopes in R

d whose linear descriptions always contains a coefficient with
absolute value as large as (d − 1)(d−1)/2/22d+o(d). This latter result is construc-
tive. Moreover, we can very easily find examples of such polytopes among the
0/1-polytopes which are studied in the discrete optimization literature. We now
describe one such example in detail.

Example 1. A knapsack polytope is the convex hull of all the points x ∈ {0, 1}d

satisfying a linear inequality
d

∑

i=1

cixi ≤ α (1)

with nonnegative integral coefficients. To avoid pathological cases, we assume
that ci ≤ α holds for all i = 1, . . . , d and that some coefficient ci is nonzero.
This ensures that our knapsack polytopes are full-dimensional. If Inequality (1) is
satisfied with equality by d affinely independent 0/1-points, then it defines a facet
of the knapsack polytope.

Any inequality that could occur as a facet-defining inequality of a full-dimen-
sional 0/1-polytope yields – perhaps after switching certain coordinates – a facet-
defining inequality of some knapsack polytope with the same dimension. In partic-
ular, knapsack polytopes can have huge facet coefficients. But there is more to it:
an inequality conveys much more structure than its largest coefficient! This article
transposes the ‘universality’ property of knapsack polytopes alluded to above to
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other 0/1-polytopes which were intensively studied in the literature, namely, the
acyclic subgraph polytope and linear ordering polytope (see Section 2 for defini-
tions).

We introduce a procedure transforming any facet of any full-dimensional 0/1-
polytope into a facet of the dicycle covering polytope. We think that our facet-
recycling procedure is interesting and valuable for the following reasons.

• It turns out that many known facets of the acyclic subgraph and linear
ordering polytope can be obtained with great ease by applying the pro-
cedure to classic facets of the vertex or edge covering polytope. So our
facet-recycling procedure sheds light on the existing polyhedral studies of
the corresponding problems. In particular, it unifies most classes of facets
and gives a paradigm for future extensions.
• Because of its generality, the procedure constitutes a ‘factory’ of facet-

defining inequalities for the acyclic subgraph polytope. Many of these
inequalities are also facet-defining for the linear ordering polytope, and
unknown precedingly.
• We believe that the procedure essentially preserves the structure of the

input inequality. If this could be formalized and proved, then it can be used
to construct facet-defining inequalities with arbitrarily ‘nasty’ structure.

Before describing the procedure further, for technical reasons, we now change the
viewpoint and switch from the acyclic subgraph polytope to the dicycle covering
polytope by making a central symmetry around 1

2
1, where 1 is the all one vector.

The linear ordering polytope is preserved under this symmetry.
The procedure works in four phases that are informally described below. Its

input is any larger or equal inequality in d variables defining a facet of some
d-dimensional 0/1-polytope.

Phase 1. Reduce the given inequality and make its coefficients nonnegative. De-
fine a full-dimensional set covering polytope which has the inequality as
one of its facet-defining inequalities.

Phase 2. By a series of simple transformations, change the set covering poly-
tope and the facet-defining inequality in order to make the set covering
polytope resemble a dicycle covering polytope.

Phase 3. Construct a digraph such that the final inequality obtained in Phase
2 defines a facet of the dicycle covering polytope of this digraph, after
renaming the variables.

Phase 4. Add all arcs which are not present in the digraph to make it complete,
without changing its node set. Thus obtain a facet-defining inequality
of the dicycle covering polytope (of a complete digraph).

The four phases of the procedure are described in more detail in Section 3.
We then indicate in Section 4 how to apply the procedure to derive the principal
known facets of the linear ordering polytope as well as new facets. The necessary
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preliminaries are given in Section 2. Namely, we define the set covering problem
in its ‘bipartite graph’ version, the set covering polytope and facet-graphs, give a
series of simple transformations one can do on facet-graphs, and define the dicycle
covering, acyclic subgraph and linear ordering polytopes.

To conclude this introduction, we mention a result obtained by Billera and
Sarangarajan [8] about the geometric structure of the traveling salesman poly-
tope. They have shown that any 0/1-polytope is affinely equivalent to a face of
some asymmetric traveling salesman polytope. Recently, the author of the present
article obtained a related result for the partial order polytope [18].

2. Preliminaries

As a general comment, we remark that most definitions which are lacking in
the text can be found in the following standard textbooks: Diestel [14] (graphs),
Bang-Jensen and Gutin [5] (digraphs), and Ziegler [39] (polytopes).

2.1. Bipartite graphs and the set covering problem. In this article, bipartite
graphs are denoted as triples B = (V, U ; E) where V and U are two disjoint sets
forming the vertex set of B, and E is the edge set of B. Moreover, it is always
assumed that each edge of B has one end in V and the other end in U , and B has
no parallel edges.

Now consider any bipartite graph B = (V, U ; E). A cover is a subset of V which
meets the neighborhood N(u) of every vertex u ∈ U . Let c denote a vector in R

V

specifying a cost cv for each vertex v ∈ V . The set covering problem is to find a
cover of minimum total cost. The minimum cost of a cover is denoted by τ(B, c).

There are two useful operations one can do on B whenever some vertex v ∈ V
has been fixed. First, one can contract v, that is, remove v and all the edges
incident to it. Second, one can delete v, that is, remove v, all its neighbors, and
all the edges incident to v or one of its neighbors. The resulting bipartite graphs
are respectively denoted by B / v and B \ v. Any bipartite graph which can be
obtained from B by a sequence of contractions and deletions is called a minor of
B. Although this terminology may seem unnatural at first sight, it makes perfect
sense for instance when B is the edge-cycle incidence graph of some undirected
graph G. In this case, the operations of deletion and contraction in B defined
above correspond to the usual operations of deletion and contraction of edges in
G. Finally, if u ∈ U we use B − u to denote the graph resulting from the removal
of vertex u and all the edges incident to it from B.

2.2. The set covering polytope. Let B = (V, U ; E) be a bipartite graph. The
characteristic vector of a subset S of V is the vector χS of R

V defined by χS
v = 1 if

v ∈ S and χS
v = 0 otherwise. When no confusion occurs, we will identify subsets of

V with their respective characteristic vectors. This allows us to write statements
like: “cover W belongs to hyperplane H”. The set covering polytope of B is the
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convex hull of the characteristic vectors of all covers of B. It is denoted by Q(B).
An alternative definition of Q(B) is the following:

Q(B) = conv{x ∈ {0, 1}V : Ax ≥ 1},

where 1 denotes the all-one vector in R
V , and A denotes the matrix with one row

per element of U , one column per element of V , Auv = 1 if uv ∈ E and Auv = 0
otherwise.

The following proposition, which summarizes the basic properties of Q(B), can
be found in Nobili and Sassano [31]. We will often use it without explicit mention.

Proposition 1 (Balas and Ng [4], Sassano [36]). Let B = (V, U ; E) be a bipartite
graph. Then Q(B) is non-empty if and only if each vertex in U has at least one
neighbor, and Q(B) is full-dimensional (i.e., dim Q(B) = |V |) if and only if each
vertex in U has at least two neighbors. Moreover, if Q(B) is full-dimensional, then

(i) the inequality xv ≥ 0 defines a ( trivial) facet of Q(B) if and only if each
vertex in U has at least two neighbors different from v;

(ii) the inequality xv ≤ 1 defines a ( trivial) facet of Q(B);
(iii) every non-trivial facet of Q(B) is defined by an inequality of the form

∑

v∈V cvxv ≥ τ where all the coefficients are integral and non-negative;
(iv) the hyperplanes supporting non-trivial facets of Q(B) do not contain the all-

zero or all-one vectors 0 and 1. �

For convenience, we call facet-graph any pair (B, c) where B is a bipartite graph
with Q(B) full-dimensional, and c is an integral cost vector such that

∑

v∈V (B)

cvxv ≥ τ(B, c) (2)

defines a non-trivial facet of Q(B) and is reduced, that is, gcd({cv : v ∈ V } ∪
{τ(B, c)}) = 1. Note that the cost vector of any facet-graph is always non-negative
and different from the all-zero vector. The following series of lemmas gives several
simple transformations applicable to facet-graphs. These are all based on the same
basic principle: they receive some facet-graph (B, c) as input and output a new
facet-graph (B′, c′). Lemma 2, the first lemma in the series, applies to facet-graphs
whose graph is disconnected. Its proof is elementary and therefore not included
here. This also applies to the next two lemmas.

Lemma 2. Let (B, c) be a facet-graph with B disconnected, and let B1 and B2

be two vertex-disjoint bipartite graphs such that B is the componentwise union of
B1 and B2. Then the support of c is contained either in V (B1) or V (B2). In the
first case, let B′ = B1 and c′ denote the restriction of c to V (B1). In the second
case, let B′ = B2 and c′ denote the restriction of c to V (B2). Then (B′, c′) is a
facet-graph with τ(B′, c′) = τ(B, c). �
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The second lemma is useful when a vertex in U has only one neighbor whose
degree is larger than one. In this case, we can almost always remove the vertex,
all its degree one neighbors and keep the facet-defining inequality as it.

Lemma 3. Let (B, c) be a facet graph such that B has a vertex u in U(B) whose
neighbors all have degree one, except one neighbor which has degree at least two.
Let B′ = B \ v where v is any degree one neighbor of u, and let c′ denote the
restriction of c to V (B′). If Inequality (2) does not read

∑

v∈N(u) xv ≥ 1 then we

have cv = 0 for all degree one neighbors of u and (B′, c′) is a facet-graph with
τ(B′, c′) = τ(B, c). �

The next lemma enables us to get rid, by contraction, of degree one vertices in
V which have a ‘twin’ vertex.

Lemma 4. Let (B, c) be a facet-graph such that B has two degree one vertices
v1 and v2 in V (B) which are adjacent to a common vertex u in U(B). Then we
necessarily have cv1

= cv2
. Let B′ = B / v1 and c′ denote the restriction of c to

V (B) \ {v1}. If the degree of u is at least 3, then (B′, c′) is a facet-graph with
τ(B′, c′) = τ(B, c). �

The fourth lemma in the series, Lemma 5, gives a way to carry out inverse
contractions and deletions on facet-graphs. More precisely, whenever (B, c) is a
facet-graph such that B is a minor of some bipartite graph B′ with Q(B′) full-
dimensional, the lemma provides a cost-vector c′ such that (B′, c′) is a facet-graph.

Lemma 5 (Lifting Lemma, Sassano [36]). Let (B, c) denote a facet-graph such
that B is obtained by a single contraction or deletion from some bipartite graph
B′ with Q(B′) full-dimensional. Let c′ denote the cost vector defined as follows:

(i) if B = B′ /w for some w ∈ V (B′), then let c′v = cv for v ∈ V (B) and
c′w = τ(B, c)− τ(B′ \ w, c);

(ii) if B = B′ \ w for some w ∈ V (B′), then let c′v = cv for v ∈ V (B) and
c′w = τ(B′ / w, c)− τ(B, c).

Then (B′, c′) is a facet-graph with τ(B′, c′) = τ(B, c) in Case (i) and τ(B′, c′) =
τ(B′ / w, c) in Case (ii).

The last lemma in our series strengthens a result of Nobili and Sassano [31].
Here B′ is obtained from B by replacing some edge by a path of length five whose
internal vertices are not in B. It plays an important role in the next sections.

Lemma 6 (Subdivision Lemma). Let (B, c) be a facet-graph with B = (V, U ; E),
let u0v0 be an edge of B with u0 ∈ U and v0 ∈ V , and let B′ denote the bipartite
graph obtained from B by substituting the edge u0v0 with the length five path with
vertex sequence u0v1u1v2u2v0 (see Figure 1). Let τ , τ− and τ+ respectively denote
the minimum cost, with respect to cost vector c, of a cover of B, of a cover of
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B − u0, and of a cover of B containing v0 and an extra neighbor of u0. Let
δ = τ − τ− and γ = min{τ − τ−, τ+ − τ}, and let c′ be the cost vector defined by:

c′v =















cv if v ∈ V, v 6= v0,
cv0
− γ if v = v0,

δ if v = v1,
δ − γ if v = v2.

Then (B′, c′) is a facet graph with τ(B′, c′) = τ + δ − γ.

B

v0u0

B′

u2

v2u1

v1

u0 v0

Figure 1. The Subdivision Lemma (Lemma 6) depicted

Proof. First note that Q(B′) is full-dimensional because Q(B) is full-dimensional.
Let d be a positive integer dividing all coefficients of c′ and τ +δ−γ. In particular,
d divides δ and hence γ because it divides δ − γ. It follows that d divides all
coefficients of c and τ , which implies d = 1 because (B, c) is a facet-graph. In
other words, we have gcd({c′v : v ∈ V (B′)}∪{τ + δ− γ}) = 1. It remains to prove
that the inequality

∑

v∈V

v 6=v0

cvxv + (cv0
− γ)xv0

+ δxv1
+ (δ − γ)xv2

≥ τ + δ − γ, (3)

defines a facet of Q(B′). Indeed, if this is the case, then this facet is non-trivial
because the cardinality of the support of c′ is always at least that of the support
of c, and we have τ(B′, c′) = τ + δ − γ. We first prove that the inequality

∑

v∈V

cvxv + δxv1
+ δxv2

≥ τ + δ (4)

is valid for Q(B′). Note that Inequality (4) is identical to Inequality (3) when
γ equals zero. By contradiction, suppose that some cover W ′ of B′ violates (4).
Because W ′ is a cover of B′, the restriction of W ′ to {v0, v1, v2} is either {v2}, or
{v1, v2}, or {v0, v1}, or {v0, v2}, or {v0, v1, v2}. In all these cases, except perhaps
the second one, W ′ \ {v1, v2} is a cover of B of cost strictly smaller than τ , a
contradiction. So we have W ′ ∩ {v0, v1, v2} = {v1, v2} and W ′ \ {v1, v2} is a cover
of B − u0 of cost strictly less than τ − δ = τ−, a contradiction. Hence Inequality
(4) is valid for Q(B′).
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By hypothesis, there is a family W of |V | affinely independent covers of B
satisfying inequality

∑

v∈V

cvxv ≥ τ (5)

with equality. The familiesW ′

0 = {W∪{v1} : v0 ∈W ∈ W} andW ′

0̄ = {W∪{v2} :
v0 /∈ W ∈ W} both exclusively contain covers of B′ that are tight for Inequality
(4), i.e., which satisfy the inequality with equality. It is easy to check that the
elements of W ′ = W ′

0 ∪ W
′

0̄ are affinely independent. Note that W ′

0 and W ′

0̄ are
both nonempty because Inequality (5) defines a non-trivial facet.

Case 1. γ = 0 and δ = 0. Let W0 and W0̄ denote any elements of W such that
v0 ∈ W0 and v0 /∈ W0̄, and let W ′

1 = W0̄ ∪ {v1, v2} and W ′

2 = W0 ∪ {v1, v2}. Then
W ′ ∪ {W ′

1,W
′

2} is a family of |V | + 2 affinely independent covers of B′ which are
tight for Inequality (4). Indeed, we know that the elements of W ′ are affinely
independent. Now consider the hyperplanes H1 and H2 defined by the equations
xv1

+xv2
= 1 and xv0

+xv2
= 1, respectively. Then W ′

1 is affinely independent from
the covers in W ′ because all these covers lie on the hyperplane H1 while W ′

1 does
not. Similarly, W ′

2 is affinely independent from the covers in W ′ ∪ {W ′

1} because
all these covers lie on the hyperplane H2 while W ′

2 does not. This proves that
Inequality (4) and hence Inequality (3) is facet-defining.

Case 2. γ = 0 and δ > 0. Let W3 denote a cover of B − u0 with cost τ−, and let
W ′

3 = W3 ∪{v1, v2}. Note that v0 does not belong to W3 because we have τ− < τ ,
and that W ′

3 is a cover of B′ with cost τ− + 2δ = τ + δ. Now let W4 denote a
cover of B containing v0 and an extra neighbor of u0, with cost τ = τ+, and let
W ′

4 = W4 ∪ {v2}. Then W ′

4 is a cover of B′ tight for Inequality (4). As in Case 1,
one can show thatW ′∪{W ′

3,W
′

4} is a family of |V |+2 affinely independent covers
of B′ which are tight for Inequality (4). So Inequality (4) and hence Inequality
(3) is facet-defining.

Case 3. γ > 0 (implying δ > 0). Let W3 and W ′

3 be as in Case 2. We know
thatW ′∪{W ′

3} is family of |V |+1 affinely independent covers of B′ which satisfy
Inequality (4) with equality. So the face F of Q(B′) defined by Inequality (4)
contains a ridge, that is, a face of dimension dim Q(B′) − 2 = |V |. On the other
hand, all vertices of F also satisfy

xv0
+ xv2

= 1, (6)

because otherwise there is a cover W ′ of B′ tight for Inequality (4) such that
W ′ ∩ {v0, v1, v2} = {v0, v2}, so W ′ \ {v2} is a minimum cost cover of B containing
v0 and a further neighbor of u0, hence τ = τ+, a contradiction. So F is a ridge
and is hence contained in exactly two facets of Q(B′). The first one is defined by
the valid inequality xv0

+ xv2
≥ 1. In order to obtain the second one, it suffices to

determine the real µ∗ such that Inequality (4) minus µ times Equality (6) is valid
if and only if µ belongs to the interval I = (−∞, µ∗]. Geometrically, the second
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facet is obtained by rotating the supporting hyperplane of the first facet the affine
subspace spanned by ridge F .

We claim that µ∗ = γ. In order to show this we have to prove that
∑

v∈V

v 6=v0

cvxv + (cv0
− µ)xv0

+ δxv1
+ (δ − µ)xv2

≥ τ + δ − µ, (7)

is valid if and only if µ ∈ (−∞, γ]. If µ > δ = τ − τ− then the coefficient of xv2

in Inequality (7) is negative and adding v2 to any cover of B′ which is tight for
Inequality (4) and does not contain v2 produces a vertex of Q(B) that violates
Inequality (7). If µ > τ+ − τ then consider a cover W5 of B containing v0 and
another neighbor of u0, of minimum cost. Let W ′

5 = W5 ∪ {v2} be the cover of B′

obtained from W5 by adding v2. Then W ′

5 violates Inequality (7) because the left
hand side is

τ+ − µ + δ − µ < τ+ − (τ+ − τ) + δ − µ = τ + δ − µ.

Now take µ ≤ γ = min{τ − τ−, τ+ − τ} and consider a cover W ′ of B′ violating
Inequality (7). We know W ′ must contain v0 and v2, because otherwise the validity
of Inequality (4) immediately implies that Inequality (7) is satisfied. If v1 ∈ W ′

then W ′ \ {v1, v2} is a cover of B of cost smaller than τ , a contradiction. Else, we
have v1 /∈ W ′ and W ′ \ {v2} is a cover of B containing v0 and a further neighbor
of u0. Its cost is less than τ + µ ≤ τ+, a contradiction. Therefore, Inequality (7)
is valid if and only if µ ≤ γ. This proves that the two facets of Q(B′) containing
ridge F are precisely those defined by the inequalities xv0

+ xv2
≥ 1 and (3). In

particular, Inequality (3) is facet-defining. �

2.3. The dicycle covering, acyclic subgraph and linear ordering poly-

topes. The literature abounds with various set covering problems (a good start-
ing point is, e.g., Cornuéjols [13]). We will mostly focus on the following one. Let
D be a digraph with node set N(D) and arc set A(D). (Throughout this article,
digraphs and dicycles are always assumed to be simple, and dicycles are considered
as sets of arcs.) We denote by C(D) the collection of all dicycles of D. Now let
B = B(D) denote the arc-dicycle incidence graph of D, that is, the bipartite graph
with V (B) = A(D), U(B) = C(D) and E(B) = {aC : a ∈ A(D), C ∈ C(D), a ∈
C}. The covers of B are called dicycle covers of D (or sometimes feedback arc sets
of D). Note that a set of arcs F is a dicycle cover if and only if D − F is acyclic.

We refer to the set covering polytope Q(B(D)) as the dicycle covering polytope
of D and denote it by PDC(D). The acyclic subgraph polytope of D, denoted by
PAC(D), is the convex hull in R

A(D) of the characteristic vectors of all sets of
arcs inducing an acyclic subgraph of D. It was studied, among others, by Jünger
[26], Grötschel, Jünger and Reinelt [24], Barahona, Fonlupt and Mahjoub [6], and
Goemans and Hall [22]. The dicycle covering and acyclic subgraph polytope of D
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are affinely equivalent, because we have

x ∈ PAC(D) ⇐⇒ 1− x ∈ PDC(D). (8)

Consequently, every polyhedral result on PDC(D) automatically translates into an
equivalent result on PAC(D), and vice-versa. When D = Dn, where Dn denotes
any complete digraph on n ≥ 2 nodes, the dicycle covering and acyclic subgraph
polytopes are respectively denoted by P n

DC and P n
AC. When we talk about “the

dicycle covering polytope” or “the acyclic subgraph polytope” without specifying a
digraph, we usually mean P n

DC or P n
AC. These two polyopes intersect in a common

face of dimension
(

n
2

)

called the linear ordering polytope and denoted by P n
LO. The

latter polytope can also be defined as the convex hull in R
A(Dn) of the characteristic

vectors of all strict linear orders on V (Dn), regarded as subsets of A(Dn). The
linear ordering polytope has been more studied than its cousins the dicycle covering
and acyclic subgraph polytopes, see Fishburn [20] and Fiorini [17] for surveys.

The inequality
∑

a∈A(Dn) caxa ≥ τ is said to be support reduced if we have cij = 0
or cji = 0 for all arcs ij. If moreover c is nonnegative, then the inequality is said
to be nonnegative support reduced. Every facet of the linear ordering polytope
can be defined by an inequality that is nonnegative support reduced, because we
have xij + xji = 1 for all arcs ij and all points x ∈ P n

LO. Since the linear ordering
polytope is a face of the dicycle covering polytope, every facet of the latter restricts
to a face of the former. The next proposition shows that every facet of the linear
ordering polytope can be obtained in this way.

Proposition 7 (Balas and Fischetti [3]). Every non-trivial facet-defining inequal-
ity for P n

LO which is nonnegative support reduced is also facet-defining for P n
DC. �

Note that a facet of the dicycle covering polytope does not always restrict to
a facet of the linear ordering polytope. An example is given by the so-called
k-dicycle inequality when k ≥ 4 [35].

3. The procedure

Phase 1: Defining the initial set covering polytope. As input to the pro-
cedure, we are given an inequality in d variables

d
∑

i=1

ci xi ≥ τ (9)

satisfied with equality by d affinely independent 0/1-points and strictly by at
least one 0/1-point. In other words, the given inequality defines a facet of some
full-dimensional 0/1-polytope in R

d. First, we scale the inequality so that its
coefficients are integral and have a greatest common divisor equal to 1. Then, if
cj is negative for some j, we switch the coordinate xj, that is, we replace xj by
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1−xj. The resulting inequality, which we abusively still refer to as Inequality (9),
is reduced and has nonnegative integral coefficients.

If the support of Inequality (9) is a singleton, then the inequality is a trivial
inequality of the form xi ≥ 0 and we output any of the two trivial facet-defining
inequalities of P 2

DC (which is a triangle defined by x12 ≤ 1, x21 ≤ 1 and x12 +x21 ≥
1). Otherwise, the support of Inequality (9) has at least two elements. It follows

that we have 0 < τ <
∑d

i=1 ci. Let Q denote the 0/1-polytope defined by

Q = conv{x ∈ {0, 1}d : x satisfies (9)}.

Inequality (9) defines a non-trivial facet of Q. Note that Q is a set covering
polytope. To see this, define a bipartite graph B = (V, U ; E) as follows. Let
V = {1, . . . , d}, let U be set of all inclusionwise minimal subsets I of V such that

∑

i∈I

ci >

d
∑

i=1

ci − τ

and let E = {iI : i ∈ V, I ∈ U, i ∈ I}. It is easy to verify that Q = Q(B). Thus we
obtain a facet-graph (B, c) with τ(B, c) = τ . (Facet-graphs are defined in Section
2, on page 5.)

Phase 2: Transforming the set covering polytope. Let (B0, c0) denote the
facet-graph obtained at the end of Phase 1. We call it the initial facet-graph. We
perform a series of simple transformations on the initial facet-graph by applying
Lemmas 2, 3, 4, 5 and 6 to it. We thus obtain a sequence of facet-graphs (B0, c0),
(B1, c1), . . . , (Bq, cq). For simplicity, let (B, c) denote the final facet-graph (Bq, cq).
From now on, we let deg′(u) denote the number of neighbors of u of degree greater
than 1. Our technical requirement is that the graph B = (V, U ; E) of the final
facet-graph be a star or satisfy the following conditions:

(C1) B is connected;
(C2) deg′(u) ≥ 2 for all u ∈ U ;
(C3) deg(u) = 2 deg′(u) for all u ∈ U ;
(C4) |N(u) ∩N(u′)| ≥ 2 implies u = u′ for all u, u′ ∈ U .

Any bipartite graph B with U(B) nonempty satisfying (C1)–(C4) is said to be
ripe. It is straightforward to prove that for any initial facet-graph there exists a
series of simple transformations such that the final facet-graph meets our technical
requirement. For instance, one can use the following algorithm (see Figure 2ab
for an illustration).

If the bipartite graph B of the final facet-graph is a star with n = |V (B)| ≥ 2
vertices of degree one, then c is necessarily the all-one vector and we output
inequality

∑

a∈C

xa ≥ 1,
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Algorithm 1 Ripen the graph of some facet-graph (B0, c0)

i← 0
q ← −1
while q < 0 do

if Bi is not connected then

Apply Lemma 2 to (Bi, ci). Let (Bi+1, ci+1) be the resulting facet-graph.
else if there is some u ∈ U(Bi) with deg′(u) = 1 then

if the inequality determined by (Bi, ci) is not
∑

v∈N(u) xv ≥ 1 then

Apply Lemma 3 to (Bi, ci). Let (Bi+1, ci+1) be the resulting facet-graph.
else

Let Bi+1 be the graph induced by Bi on u and its neighbors and let ci+1

be the restriction of ci to V (Bi+1) = N(u).
end if

else if there is some u ∈ U(Bi) with deg′(u) ≥ 2 and deg(u) < 2 deg′(u)
then

Let Bi+1 be the bipartite graph obtained from Bi by adding a new vertex v
and the edge uv. Apply Lemma 5(i) to obtain a cost vector ci+1 such that
(Bi+1, ci+1) is a facet-graph.

else if there is some u ∈ U(Bi) with deg′(u) ≥ 2 and deg(u) > 2 deg′(u)
then

Let Bi+1 = Bi / v, where v is any vertex of degree one adjacent to u. Let
ci+1 denote the restriction of ci to V (Bi+1). By Lemma 4, (Bi+1, ci+1) is a
facet-graph.

else if there are some u, u′ ∈ U(Bi) with |N(u) ∩ N(u′)| ≥ 2 and u 6= u′

then

Let Bi+1 be the bipartite graph obtained from Bi by replacing the edge
uv by a path of length five, where v is any vertex adjacent to both u and
u′. Apply Lemma 6 to obtain a cost vector ci+1 such that (Bi+1, ci+1) is a
facet-graph.

else

q ← i
end if

i← i + 1
end while

where C is a dicycle with n nodes in the complete digraph Dn.

Phase 3: From set covering polytopes to dicycle covering polytopes.

Let B be any ripe bipartite graph. A digraph D without isolated nodes is a
representation of B if there is a bijection α : V (B)→ A(D) and an injective map
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γ : U(B) → C(D) (remember C(D) denotes the collection of all dicycles of D)
satisfying the following conditions (an example is given in Figure 2c):

(R1) we have α(v) ∈ γ(u) if and only if uv ∈ E(B);
(R2) if u and u′ are distinct elements of U(B), then dicycles γ(u) and γ(u′) either

share one arc and two nodes or are node-disjoint.

γ(u1)α(v1)

α(v2)

α(v4)

α(v3)
v3

v1

v4

u1

v2

a) b) c)

Figure 2. a) A nonripe bipartite graph B0, b) a ripe bipartite
graph B, c) a representation of B

Proposition 8. If the bipartite graph B is ripe then it has a representation.

Proof. Let B = (V, U ; E). For each vertex u ∈ U , pick any bijection fu from
the neighborhood N(u) of u to the set {0, 1, . . . , deg(u) − 1} such that fu(v) is
odd if and only if deg(v) = 1. The bijections fu are guaranteed to exist thanks
to condition (C2) in the definition of a ripe bipartite graph. Let D = (N,A)
have nodes of the form su,i where u ∈ U and i ∈ {0, 1, . . . , deg(u) − 1}, with the
following identifications. Whenever u, u′ ∈ U have a common neighbor v ∈ V , we
let

su,fu(v) = su′,f
u′ (v) and su,fu(v)+1 = su′,f

u′ (v)+1.

Above, additions are computed modulo deg(u) and deg(u′), respectively. For each
vertex u ∈ U and for each i ∈ {0, 1, . . . , deg(u) − 1}, digraph D has an arc
(su,i, su,i+1). The bijection α : V → A is defined by α(v) = (su,fu(v), su,fu(v)+1)
where u is any vertex adjacent to v ∈ V . Finally, the injective map γ : U → C(D)
maps u ∈ U to the dicycle γ(u) with node sequence su,0su,1 · · · su,deg(u)−1su,0. Note
that conditions (C1) and (C2) together imply that the length of the dicycle γ(u)
is an even number larger or equal to 4 for all vertices u ∈ U . It is left to the reader
to verify that (R1) and (R2) are satisfied. �

Let D be any representation of the bipartite graph B = (U, V ; E), and let α
and γ denote the associated maps. Because B is ripe, half of the neighbors of any
vertex u ∈ U have degree one and half have degree at least two. We call the degree
one vertices in V and the corresponding arcs in D simple. The other vertices in
V and their corresponding arcs are called multiple.
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The representation D can have dicycles which are not of the form γ(u) for
any u ∈ U . Such dicycles are called long. For example, in Figure 2c, there are
long dicycles of length 6. In contrast, we call a dicycle short if it is not long or,
equivalently, if it is the image of some element of U by map γ. By nature, the arcs
of each dicycle of D are cyclically ordered. In particular, D determines a cyclic
ordering on the arcs of each short dicycle. Via the maps α and γ, these cyclic
orderings determine a cyclic ordering of each neighborhood N(u). (In fact, these
determine the representation, up to isomorphism). Thus we define the successor
(resp., predecessor) of a vertex v in the neighborhood of u as the vertex α−1(a)
where a is the successor (resp., predecessor) of arc α in the dicycle γ(u).

The following lemma states some useful properties of representations. In the
lemma and below, a node of a representation is called an inlet if it has in-degree at
least two and out-degree one and an outlet if it has in-degree one and out-degree
at least two.

Figure 3. A local view of a representation

Lemma 9. Let B a ripe bipartite graph and let D be a representation of B with
maps α and γ. Then the following hold:

(i) in a short dicycle, simple and multiple arcs alternate;
(ii) each node of D is either and inlet or an outlet. Each multiple arc goes from

an inlet to an outlet, and each simple arc goes from an outlet to an inlet. In
particular, D is a bipartite digraph.

Proof. Consider a short dicycle γ(u), where u ∈ U(B). If simple and multiple arcs
do not alternate, there are two consecutive multiple arcs α(v′) and α(v′′) in γ(u).
Let u′ and u′′ respectively denote any neighbor of v′ and v′′ distinct from u. We
have u′ 6= u′′ because otherwise the short dicycles corresponding to u′ and u would
share at least three nodes, contradicting (R2). Now it can be easily verified that
u′ and u′′ violate (R2), a contradiction. Both parts of the lemma follow. �
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The following concepts will help us to do deal with long dicycles. A vertex
v ∈ V is called thin if we have deg(v) ≥ 2 and deg′(u) = 2 for all neighbors u of
v (see Figure 4). The corresponding arc α(v) is also said to be thin. So an arc
is thin if and only if it is contained in at least two short dicycles and all short
dicycles containing it are of length 4 (see Figure 5 below).

v

Figure 4. A thin vertex

Let W be a cover of B and v ∈ V be a thin vertex. We denote by W ↑ v
(resp., W ↓ v) the cover obtained from W by replacing each vertex in V which
is the successor (resp., predecessor) of v in the neighborhood of some u ∈ U by
the predecessor (resp., successor) of v in the neighborhood of the same vertex u.
We call the operations transforming W into W ↑ v and W ↓ v respectively pulling
and pushing W at v. Figure 5 pictures these two operations in a representation.
In the figure, solid lines are used for arcs which are in the image of the cover by
α, and dashed lines are used for arcs which are not.

α(W ↑ v) α(W ↓ v)α(W )

Figure 5. Pulling and pushing W at w

We call a vertex v in V and the corresponding arc α(v) satellite if v is simple
(i.e., of degree one) and at distance two of a thin vertex. Two satellite vertices
are said to be opposite if they have a common neighbor. Similarly, two satellite
arcs are said to be opposite if the corresponding vertices are opposite. Note that
the operations of pulling and pushing only affect satellite vertices. More precisely,
they cause certain satellite vertices to be replaced by their respective opposite. A
key property of the operations of pulling and pushing a cover at a vertex is the
following.
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Lemma 10. Let B be a ripe bipartite graph, let v be a thin vertex of B, let D be a
representation of B with maps α and γ, and let W be a cover of B. Every dicycle
of D through α(v) meets both α(W ↑ v) and α(W ↓ v). �

Proof. By contradiction, suppose that some dicycle C through a = α(v) contains
no arc in α(W ↑ v) (the other case is similar). Let a− denote the predecessor of a
in C and let a−− denote the predecessor of a− in C. By Lemma 9, a− is a simple
arc and a−− is a multiple arc. Because α(v) is thin, a− is a satellite arc. Since it
is disjoint from C, α(W ↑ v) contains neither a nor a−. Since moreover α(W ↑ v)
does not contain the opposite arc of a−, it has to contain the fourth arc of the
short dicycle through a and a−. We claim that this arc has to be a−−. Indeed, by
Lemma 9, the only arc of D whose head is the tail of a− is a−−. So a−− belongs
to α(W ↑ v), a contradiction. This concludes the proof. �

The next proposition lies at the heart of our facet-recycling procedure. It enables
us to cross the border between general set covering polytopes and dicycle covering
polytopes.

Proposition 11. Let (B, c) be a facet-graph with B = (V, U ; E) ripe, let τ =
τ(B, c), and let D be a representation of B with maps α and γ. If every long
dicycle of D contains at least two thin arcs then

∑

v∈V

cvxα(v) ≥ τ (10)

defines a facet of Q(B(D)) = PDC(D).

Proof. First note that the cost of every satellite vertex equals the cost of its op-
posite, by Lemma 4. Consider a minimum cost cover W . Then W ↑ v is also a
minimum cost cover. In particular, the image α(W ↑ v) of this cover by α meets
every short dicycle. Moreover, because every long dicycle contains at least two
thin arcs, Lemma 10 implies that α(W ↑ v) also meets every long dicycle. So D
has a dicycle cover of cost τ . Because D clearly has no dicycle cover of cost less
than τ , Inequality (10) defines a non-empty face F of PDC(D).

Because (B, c) is a facet-graph, we know that the system
∑

v∈W

yv = τ for all minimum cost covers W (11)

has a unique solution. For convenience, let us call good any minimum cost cover
W such that α(W ) is a dicycle cover of D. In order to prove that Inequality (10)
is facet-defining, it suffices to show that the system

∑

v∈W

yv = τ for all good covers W (12)

has a unique solution. Because (11) has a unique solution, it suffices to show that
every equation of (11) is implied by (12). Now consider any pair w, w′ of opposite
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satellite vertices. Let u denote their common neighbor, and let v be a thin vertex
adjacent to u. Without loss of generality, we can assume that w and w′ are the
predecessor and successor of v in the neighborhood of u, respectively. Because
(B, c) is a facet-graph, there is a minimum cost cover W0 containing w and not
w′. Let W1 denote the minimum cost cover obtained by pushing W1 at every thin
vertex and then replacing w′ by w. By Lemma 10, W2 is a good cover containing
w and not w′. This is due to the fact that every long dicycle of D contains at least
one thin arc distinct from α(v). Furthermore, W2 = W1 ↓ v = (W1 \ {w}) ∪ {w

′}
is a good cover containing w′ and not w. By taking the difference of the equations
corresponding to W = W1 and W = W2 in (12), we obtain yw = yw′ . Consequently,
(12) implies

yw = yw′ for every pair w,w′ of opposite satellite vertices. (13)

Every minimum cost cover can be transformed into a good cover by pulling and
pushing at certain thin vertices. It follows that every equation of (11) can be
deduced from some equation of (12) by using (13). This concludes the proof. �

Let (B, c) denote the facet-graph obtained at the end of Phase 2. In particular,
B is ripe. By transforming the facet-graph further using Lemmas 5 and 6, we can
moreover ensure that B has a representation in which every long dicycle contains
two thin arcs. For instance, we can replace every edge of B by a length five path
and then append four satellite vertices for each original edge. We then apply
Proposition 11 to (B, c) and find a digraph D and a facet-defining inequality of
PDC(D) whose left hand side coefficients bijectively correspond to the coefficients
of c and whose right hand side is τ(B, c).

Phase 4: Making the digraph complete. We now add to D one arc at a
time to make D a complete digraph, without adding any new node. Each time,
we use Lemma 5(ii) to compute a coefficient for the new variable that appears
in Inequality (10) and a new right hand side in order to ensure that it remains
facet-defining for PDC(D). At the end, we obtain a facet-defining inequality for
P n

DC where n = |N(D)|, which is output by the procedure.

4. Applications to the linear ordering polytope

The principal known facet-defining inequalities of the linear ordering polytope
are the following: the fence inequalities of Grötschel, Jünger and Reinelt [23]
and Cohen and Falmagne [12], the reinforced fence inequalities of Suck [38] and
Leung and Lee [28], the stability-critical (or α-critical) fence inequalities of Koppen
[27], the (facet-defining) graphical inequalities of Doignon, Fiorini and Joret [15]
(see also Christophe, Doignon and Fiorini [10]), the Möbius ladder inequalities of
Grötschel, Jünger and Reinelt [23], the inequalities of Fiorini [19], which we will
refer to as factor-critical graph inequalities, and the inequalities obtained from all
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these by symmetries of the linear ordering polytope, see Bolotashvili, Kovalev and
Girlich [9] and Fiorini [16].

Figure 6 gives a Hasse diagram of the generalization relation among the facets
mentioned above. In the figure, the most basic facets are at the bottom and the
most general ones at the top, and we call a Möbius ladder simple if all its gener-
ating dicycles have length four. In Subsections 4.1 and 4.2 we respectively define
graphical and factor-critical graph inequalities and show they can be readily ob-
tained from the second and third phases of our facet-recycling procedure. The
reinterpretation covers all inequalities of Figure 6, except the Möbius ladder in-
equalities. They are defined and briefly commented on in Subsection 4.3. Finally,
in Subsection 4.4, we derive a new class of facet-defining inequalities generalizing
the (facet-defining) graphical inequalities.

factor-critical
graph

Möbius ladder

k-fence

3-fence

simple Möbius

graphical

α-critical
fence

ladder

t-reinforced
k-fence

Figure 6. Dependencies among the principal known facets

4.1. Graphical inequalities. We first define the graphical inequalities, following
[10, 15]. A weighted graph is a pair (G,µ) where G is a graph and µ is a function
assigning an integral weight µ(v) to each vertex v of G. Let S denote any subset
of V (G). We denote by µ(S) =

∑

v∈S µ(v) the total weight of S and by w(S) =
µ(S) − ||S|| the worth (or net weight) of S, where ||S|| denotes the number of
edges in the subgraph of G induced by S. The maximum worth of a set of vertices
in (G,µ) is denoted by α(G,µ). When µ is the all-one weighting 1l, we have
α(G,µ) = α(G, 1l) = α(G), where α(G) denoted the stability number of G.

Let N be a finite set with cardinality n, let X and Y be two disjoint subsets of
N with the same cardinality, and let f be a bijection from X to Y . Let (G,µ) be
a weighted graph whose vertex set equals X. The graphical inequality of (G,µ)
reads

∑

v∈V (G)

µ(v) xvf(v) −
∑

vw∈E(G)

(xvf(w) + xwf(v)) ≤ α(G,µ). (14)

By choice of the right-hand side, the inequality is always valid for the linear order-
ing polytope P n

LO. The facet-defining graphical inequalities can be characterized
as follows.



HOW TO RECYCLE YOUR FACETS 19

Proposition 12 (Doignon, Fiorini and Joret [15]). The graphical inequality of
a weighted graph (G,µ) is facet-defining for the linear ordering polytope if and
only if (G,µ) is distinct from the weighted graph (K2, 1l) and the following system
of equations with |V (G)| + |E(G)| variables denoted by yv ( v ∈ V (G)) and ye

( e ∈ E(G)) has a unique solution:
∑

v∈T

yv +
∑

e∈E(T )

ye = α(G,µ) for all maximum worth sets T ⊆ V (G). (15)

�

Two interesting special cases occur when µ = 1l or G is a complete graph. A
graph without isolated vertices is said to be stability-critical (or α-critical) when
the removal of any of its edges increases its stability number. Koppen [27] has
proved that the graphical inequality of (G, 1l) defines a facet if and only if G is
a connected stability critical distinct from K2. In this case, we call Inequality
(14) a stability-critical (or α-critical) fence inequality. When G is a complete
graph and µ = t1l, the corresponding graphical inequality was shown by Suck
[38] and Leung and Lee [28] to be facet-defining if and only if 1 ≤ t ≤ |X| − 2.
These inequalities are called reinforced fence inequalities. Note that Christophe,
Doignon and Fiorini have shown that when G is complete, a constant weighting
µ is necessary for Inequality (14) to define a facet. For the sake of completeness,
we mention that Inequality (14) is a 3-fence inequality when (G,µ) = (K3, 1l) and
a simple Möbius ladder inequality when µ = 1l and G is an odd cycle.

We now explain how graphical inequalities can be obtained from our procedure.
Because xij +xji = 1 holds for all points of the linear ordering polytope, Inequality
(14) can be rewritten as

∑

v∈V (G)

µ(v) xf(v)v +
∑

vw∈E(G)

(xvf(w) + xwf(v)) ≥ τ(G,µ), (16)

where τ(G,µ) = µ(V (G)) − α(G,µ). For technical reasons, we assume that G is
connected and has minimum degree at least 2. This does not restrict the generality
since these conditions are necessary for the corresponding graphical inequality to
define a facet when G is not a one-vertex graph. Let B0 denote the bipartite
graph with V (B0) = V (G), U(B0) = E(G) and E(B0) = {ve : v ∈ V (G), e ∈
E(G), v ∈ e}, and let B be the bipartite graph obtained from B0 by attaching two
new vertices of degree one to each vertex in U(B0). Note that B is ripe and has
deg(u) = 4 for each u ∈ U(B). In fact, the transformation we do on B0 to obtain
B is consistent with Algorithm 1. The only difference is that we are not specifying
a cost vector yet, in order to obtain the most general inequalities later on.

It turns out that B has essentially one representation, which we construct as
follows. Because we forbid isolated vertices in representations, we need to assume
that X and Y actually partition N . This does not hurt because any inequality
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defining a facet of the linear ordering polytope P n
LO also defines a facet of the linear

ordering polytope P n′

LO whenever n′ ≥ n [35]. Let D = (N,A) be the digraph with
node set N = X ∪ Y containing one arc f(v)v for each vertex v of G, plus two
arcs vf(w) and wf(v) for each edge vw of G. It is straightforward to define the
corresponding maps α and γ. For instance, the image by γ of u = vw is the
dicycle with node sequence f(v)vf(w)wf(v). The resulting representation is in
fact isomorphic to the representation given by Proposition 8. Note that every short
dicycle of D is of length four and that every long dicycle of D contains at least
three thin arcs. Let now c be the cost vector defined by cv = µ(v) if v ∈ V (G) and
cv = 1 otherwise. It is straightforward to check that τ(B, c) = τ(G,µ). Therefore,
Inequality (10) is identical to the graphical inequality of (G,µ). Rephrased in
our terminology, the backward direction of Proposition 12 states that for such
cost vectors c, Inequality (10) is facet-defining for the linear ordering polytope
whenever (B, c) is a facet-graph. We prove that the same holds for more general
cost vectors in Subsection 4.4. This is done by strengthening the conclusion of
Proposition 11.

4.2. Factor-critical graph inequalities. These inequalities were originally de-
fined by the author in [19] using a less general concept of representation than the
one introduced in the present article. In fact, a main motivation for us was to try
and generalize these inequalities.

Let G be a connected graph with minimum degree at least 2, let H be the
graph obtained from G by replacing every edge by a path of length three inter-
nally disjoint from the rest of the graph, let B0 denote the bipartite graph with
V (B0) = E(H), U(B0) = V (H) and E(B0) = {ev : e ∈ E(H), v ∈ V (H), e 3 v},
and let B be the bipartite graph obtained from B0 by attaching degH(u) new
vertices of degree one to each vertex in U(B0) = V (H). Once again, B is ripe and
hence admits representations by Proposition 8. The next proposition is adapted
from [19]. Factor-critical graphs and extra-bad vertices are defined just below the
proposition.

Proposition 13. Let H and B be defined as above, let D denote any represen-
tation of B with arc map α, let c = 1 be the all-one vector, and let τ = τ(B,1).
Then Inequality (10) is facet-defining for the linear ordering polytope if and only
if H is factor-critical and has no extra-bad vertex. �

A graph is called factor-critical if the removal any of its vertices results in a
graph which has a perfect matching. Much unlike stability-critical graphs [2], the
factor-critical graphs have a by-now easy characterization [30]. A vertex u of H is
said to be bad if the edges incident to u can be partitioned into two sets, say R and
Y (for Red and Yellow), such that H has no minimum edge cover intersecting R
and Y simultaneously. The vertex u is called extra-bad if moreover R and Y form
intervals in the cyclic ordering of δH(u) = R∪Y determined by the representation.
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Note that the polytope Q(B0) is the edge covering polytope of G [37]. All the
facets of Q(B0) are known and are defined by rank inequalities (i.e., with all their
left-hand side coefficients in {0, 1}). It turns out that when a facet-graph of the
form (B0, c0) is input in Phase 2 of the procedure, the inequality output after
Phase 3 is completed is either one of the facet-defining inequalities characterized
by Proposition 13 or not facet-defining for the linear ordering polytope.

4.3. Möbius ladder inequalities. We begin by stating Reinelt’s original def-
inition of a Möbius ladder [35]. A digraph D = (N,A) is a Möbius ladder if
there is a nonnegative integer k and dicycles C0, C1, . . . , Ck−1 in D such that
A = C0 ∪C1 ∪ · · · ∪Ck−1 and the following conditions are satisfied for all i, j (all
index computations are done modulo k):

(M1) k ≥ 3 and k is odd;
(M2) Ci ∩ Ci+1 contains exactly one arc, denoted by ei;
(M3) Ci ∩ Cj = ∅ if j /∈ {i− 1, i, i + 1};
(M4) |Ci| ∈ {3, 4};
(M5) the total degree of each node in D is greater or equal to 3;
(M6) if Ci and Cj have a node v in common and i 6= j, then either Ci, Ci+1, . . . ,

Cj−1, Cj have node v in common, or Cj, Cj+1, . . . , Ci−1,Ci have node v in
common, but not both;

(M7) D − {ei+1, ei+3, . . . , ei−2} contains exactly one dicycle, namely, Ci.

1

2 3

4

5

6

7 8

910

12

11

Figure 7. A Möbius ladder

An example is given in Figure 7. Consider a Möbius ladder D = (N,A). The
corresponding Möbius ladder inequality reads

∑

ij∈A

xij ≥
k + 1

2
(17)

and defines a facet of the linear ordering polytope [35]. By Lemma 9, any repre-
sentation of any ripe bipartite graph is itself bipartite. Therefore, a Möbius ladder
is a representation of some ripe bipartite graph only if all its generating dicycles
have length 4. As noted above in Subsection 4.1, the converse holds also. So,
among the Möbius ladder inequalities, only the simple Möbius ladder inequalities
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can be produced by our procedure. However, Möbius ladders can be obtained
from simple Möbius ladders by contracting certain satellite arcs. It would be in-
teresting to understand which satellite arcs can be contracted in order to preserve
the ‘facetness’ of more general facet-defining inequalities such as the factor-critical
graph inequalities.

4.4. New facets. We now state and prove the generalization of Proposition 12
announced above.

Proposition 14. Let B, D and α be defined as in Subsection 4.1. Let c be a
nonnegative cost vector whose support is the whole set V (B), and let τ = τ(B, c).
If (B, c) is a facet-graph, then Inequality (10) defines a facet of the linear ordering
polytope.

Proof. Let Dn = (N,An) denote the complete digraph on N . By the trivial lifting
lemma for linear ordering polytopes [35], we can assume that N = X ∪ Y . Every
long dicycle of D contains at least three thin arcs, so Proposition 11 applies.
Hence, the system

∑

a∈α(W )

za = τ for all good covers W,

za = 0 ∀a ∈ An \ A.

(18)

has a unique solution. Recall that a cover of B is said to be good if it is of
minimum cost and its image by α is a dicycle cover of D.

We say that an inequality in R
An is in internal form if the coefficients cor-

responding to anti-parallel arcs sum up to 0. Geometrically, an inequality is in
internal form if and only if its left-hand side coefficients form a vector which is
orthogonal to the affine hull of the linear ordering polytope. Inequality (10) can
be brought in internal form by substracting cij/2 times the equation xij + xji = 1
from it for all arcs ij ∈ A. The resulting valid inequality reads

∑

ij∈A

(cij

2
xij −

cji

2
xji

)

≥ τ ′ := τ −
∑

ij∈A

cij

2
. (19)

It defines exactly the same face of the linear ordering polytope as Inequality (10).
Note that the right-hand side τ ′ is nonzero because otherwise the barycenter of
the polytope satisfies Inequality (19) with equality, contradicting the validity of
the latter inequality. In order to show that Inequality (19) is facet-defining, it
suffices to prove that the system

∑

ij∈L

zij = τ ′ for all tight linear orders L,

zij + zji = 0 ∀ij ∈ An.
(20)

has a unique solution. Above, a linear order is said to be tight if its characteristic
vector satisfies Inequality (19) with equality. Because a point of the linear ordering
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polytope satisfies Inequality (19) with equality if and only if it satisfies Inequality
(10) with equality, a linear order L is tight exactly when its intersection with A
equals α(W ) for some good cover W , or equivalently if and only if it extends the
arc set

β(W ) := α(W ) ∪ {ji ∈ An : ij ∈ A \ α(W )}

for some good cover W . Because (18) has a unique solution and τ and τ ′ are both
nonzero, it is enough to prove that (20) implies zij = 0 for all arcs ij ∈ An such
that ij and ji do not belong to A. Furthemore, it suffices to find, for each arc
ij ∈ An with ij, ji /∈ A a good cover W = W (ij) such that β(W ) contains no i–j
dipath and no j–i dipath. Indeed, if such a W exists, then we can find a tight
linear order L1 such that i is directly followed by j. Exchanging the roles of i and
j in L1, we get a second tight linear order L2. Now, by taking the difference of
the equations corresponding to L = L1 and L = L2 in (20), we find zij = zji. By
the second group of equations in (20), this implies zij = zji = 0.

Case 1. i = v, j = w and vw ∈ E(G). Because Inequality (10) is not the 4-dicycle
inequality

xf(i)i + xif(j) + xf(j)j + xjf(i) ≥ 1

there is a good cover W such that α(W ) contains at least two of the four arcs in
the short dicycle with vertex sequence f(i)if(j)jf(i). Because W is a minimum
cost cover and we have cv > 0 for all v ∈ V (B), α(W ) contains the multiple arcs
f(i)i and f(j)j. It follows that α(W ) contains none of the simple arcs incident to
i or j. Hence, there is no i–j dipath and no j–i dipath in β(W ).

Case 2. i = v, j = w and vw /∈ E(G). Consider any good cover W0 containing v.
If we let W = W0 ↑ w, then β(W ) contains no i–j dipath and no j–i dipath.

Case 3. i = v, j = f(w) and vw /∈ E(G). Let W0 denote any good cover not
containing w, and let W = (W ↑ w) ↑ v. Then there is no i–j dipath and no j–i
dipath in β(W ).

Case 4. i = f(v), j = f(w) and vw ∈ E(G). This case is similar to Case 1.

Case 5. i = f(v), j = f(w) and vw /∈ E(G). This case is similar to Case 2. �

Let G and B0 be defined in Subsection 4.1. The set covering polytope Q(B0)
is known as the vertex covering polytope of G, and is affinely equivalent to the
stable set polytope of G [37]. One possible way to obtain facet-graphs satisfying
the hypotheses of Proposition 14 is to start from a coefficient vector c0 such that
(B0, c0) is a facet-graph satisfying

τ(B0 − u, c0) < τ(B0, c0) ∀u ∈ U(B0). (21)

The corresponding facets of the stable set polytope are called critical. They are
extensively studied in Lipták and Lovász [29]. Then, as it is done in Algorithm 1,
we use Lemma 5 to compute a coefficient vector c such that (B, c) is a facet-graph.
It turns out that cv = c0,v for v ∈ V (B0) and cv = τ(B0, c0) − τ(B0 − u, c0) for
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v ∈ V (B) \ V (B0), where u denotes the unique neighbor of v in B. The next
corollary follows. Below, we say that a facet-graph of the form (B0, c0) is critical
whenever c0 satisfies (21).

Corollary 15. Let G and B0 be defined as above and let c0 be a cost vector such
that (B0, c0) is a critical facet-graph. Let τ = τ(B0, c0), let dv = c0,v for v ∈ V (G),
and let dvw = τ − τ(B0 − vw, c0) for vw ∈ E(G). Then the inequality

∑

v∈V (G)

dv xf(v)v +
∑

vw∈E(G)

dvw (xvf(w) + xwf(v)) ≥ τ

defines a facet of the linear ordering polytope. �

Chvátal [11] has shown that the inequality
∑

v∈V xv ≤ α(G) defines a facet
of the stable set polytope of a graph G whenever G is connected and stability-
critical. Corollary 15 indicates how Koppen’s stability-critical fence inequalities
can be derived directly from Chvátal’s result.

5. Further Remarks

The problem of determining if a given inequality defines a facet of the linear or-
dering polytope is hard in following technical sense: it is complete for the class Dp

introduced by Papadimitriou and Yannakakis [33], as we now show. We remark
that the same holds for the acyclic subgraph polytope (and hence for the feed-
back arc set polytope as well). MINIMAL UNSATISFIABILITY is the following
problem: “Given a Boolean formula in conjuctive normal form with at most three
literals per clause and at most three occurences of each variable, is it true that
it is unsatisfiable, yet removing any clause renders it satisfiable?”. Papadimitriou
and Wolfe [32] have shown that MINIMAL UNSATISFIABILITY is Dp-complete.
We can easily turn Vazirani’s reduction from MINIMAL UNSATISFIABILITY to
CRITICAL VERTEX COVER (“Given a graph G and integer k, is it the case
that G has no vertex cover of size k, but the graph obtained by removing any edge
to G does have a vertex cover of size k”) [32], to a reduction from MINIMAL UN-
SATISFIABILITY to the problem of recognizing the facets of the linear ordering
polytope. The idea is to use Vazirani’s graph G and integer k, and to consider
inequality (14) with µ(v) set to 1 for all vertices v and right-hand side replaced
by |V (G)| − k. As is easily verified, the latter inequality is facet-defining if and
only if the original Boolean formula is minimally unsatisfiable.

One original motivation to develop our facet-defining procedure was to find
facet-defining inequalities of the linear ordering polytope with ‘bad’ coefficients.
It turns out that we can obtain such facets much more simply by using results
on graphical inequalities from [10, 15]. For every positive integer k, we can easily
construct a nonnegative support reduced facet-defining inequality of the linear
ordering polytope whose nonzero coefficients are 1, 2, . . . , k; as follows. Start
from an odd cycle with vertices v1, v2, . . . , v`, where ` > k. For i = 1, . . . , k, we
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remove the edge vivi+1, append a clique of size i + 1, link half of its vertices to vi

and the other half to vi+1. The resulting graph G is stability-critical, as follows
from a result of Plummer [34]. (See Figure 8 for an illustration.) Hence, the
graphical inequality of the weighted graph (G, 1l) is facet-defining for the linear
ordering polytope. The same holds for the graphical inequality (G, deg−1l) [10,
15]. The later facet-defining inequality has the required property, that is, its
nonzero coefficients are 1, 2, . . . , k.

Figure 8. An example for ` = 5 and k = 4.
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