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Abstract. In the minimum entropy set cover problem, one is given a collection
of k sets which collectively cover an n-element ground set. A feasible solution
of the problem is a partition of the ground set into parts such that each part is
included in some of the k given sets. The goal is to find a partition minimizing the
(binary) entropy of the corresponding probability distribution, i.e., the one found
by dividing each part size by n. Halperin and Karp have recently proved that the
greedy algorithm always returns a solution whose cost is at most the optimum
plus a constant. We improve their result by showing that the greedy algorithm
approximates the minimum entropy set cover problem within an additive error of
1 nat = log, e bits =~ 1.4427 bits. Moreover, inspired by recent work by Feige,
Lovész and Tetali on the minimum sum set cover problem, we prove that no
polynomial-time algorithm can achieve a better constant, unless P = NP. We also
discuss some consequences for the related minimum entropy coloring problem.

1 Introduction

Let V be an n-element ground set and . = {S},...,S;} be a collection of sub-
sets of V whose union is V. A cover is an assignment f : V — .# of each point
of V to a set of . such that v € f(v) forall ve V. Foreachi=1,... k, we let
qi = qi(f) denote the fraction of points assigned by f to the i-th set of ., i.e.,
—1
S.

n

The minimum entropy set cover problem (MESC) asks to find a cover f mini-
mizing the entropy of the distribution (g1,...,qx). Letting ENT(f) denote this
latter quantity, we have

k
ENT(f) := — ) gilogg;. 2)
i=1

1

* Research Fellow of the Fonds National de la Recherche Scientifique (FNRS).



Note that, throughout, all logarithms are to base 2. Note also that, for definite-
ness, we set xlogx = 0 when x = 0.

The minimum entropy set cover problem is a NP-hard variant of the classical
minimum cardinality set cover problem. Its recent introduction by Halperin and
Karp [8] was motivated by various applications in computational biology. The
problem is closely related to the minimum entropy coloring problem, which
itself originates from the problem of source coding with side information in
information theory, see Alon and Orlitsky [1].

The well-known greedy algorithm readily applies to MESC. It iteratively
assigns to some set of .7 all unassigned points in that set, until all points are
assigned. In each iteration, the algorithm choses a set that contains a maximum
number of unassigned points. Halperin and Karp [8] studied the performance
of the greedy algorithm for MESC. They proved that the entropy of the cover
returned by the algorithm is at most the optimum plus some constant’. Approx-
imations within an additive error are considered because the entropy is a loga-
rithmic measure. In the case of MESC, the optimum value always lies between
0 and logn.

In this paper, we revisit the greedy algorithm and give a simple proof that it
approximates MESC within 1 nat, that is, loge ~ 1.4427 bits. We then show that
the problem is NP-hard to approximate to within (1 — €)loge for all positive &.
At the end of the paper, we discuss some consequences for the minimum entropy
coloring problem.

At first sight, it might seem surprising that MESC can be approximated so
well whereas its father problem, the minimum cardinality set cover problem, is
notoriously difficult to approximate, see Feige [3]. We conclude the introduc-
tion by offering an intuitive explanation to this phenomenon. A consequential
difference between the two problems is the penalty incurred for using too many
sets. A minimum entropy cover is allowed to use a lot more sets than a minimum
cardinality cover, provided the parts of these extra sets are small.

The same phenomenon also appears when one compares the minimum car-
dinality set cover problem to the minimum sum set cover problem (MSSC), see
Feige, Lovasz, and Tetali [5]. The approximability status of the latter problem is
similar to that of MESC: the greedy algorithm approximates it within a factor of
4 and achieving a factor of 4 — € is NP-hard, for all positive €. Furthermore, the
techniques used here for proving the corresponding results on MESC are com-
parable to the ones used in [5] for MSSC, especially for the inapproximability
result.

3 They claim that the greedy algorithm gives a 3 bits approximation (which is correct). However,
their proof is flawed (e.g., see their Lemma 6). A straightforward fix gives an approximation
guarantee of 3 +2loge ~ 5.8854 bits.



2 Analysis of the Greedy Algorithm

We begin this section by exhibiting a family of instances on which the greedy
algorithm perfoms poorly, namely, returns a solution whose cost exceeds the
optimum by roughly loge bits. Below, we use the following bounds on the fac-
torial. These bounds are implied by the more precise bounds given, e.g., in [6].

Lemma 1. For any positive integer ¢, we have

(f)f <0 <2V2ml <5>[

Let £ be a positive integer. We let the points of V be the cells of a £ x £! array
and . be the union of two collections .%,,; and .#7;,. each of which partitions V.
The sets in .7, are the £! columns of the array. For each i = 1,..., ¢, collection
“line contains £!/i sets of size i which partition the i-th line of the array. An
illustration is given in Figure 1. (While in the figure each set of .#;,. consists
of contiguous cells, we do not require this in general.) Each of the collections
o1 and Sy directly yields a feasible solution for MESC, which we denote
respectively by f.,; and f;,.. Clearly, fji,. is one of the possible outcomes of the
greedy algorithm.
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Fig. 1. The sets forming .%7;,,

The respective costs of f.,; and fj;,. are as follows:

0
1 1

ENT(for) =— ), EIOgE = log/!,

p=f4 !

oo 1
ENT(fiine) = — Z €.. 7 log =logl+logl!— Zlogﬁ!.

-0

By the second inequality of Lemma 1, we then have

1
ENT(fiine) > logl+logt! — Elog [2\/27[6(5)6] =ENT(f,01) +loge —o(1).



This implies that the cost of fj;, is at least the optimum plus loge —o(1). We
now show that the previous instances are essentially the worst for the greedy
algorithm. Because the two formulations of MESC given above are equivalent to
each other, we can regard a cover f as a partition of the ground set. Accordingly,
we refer to the sets f~!(S;) as the parts of f.

Theorem 1. Let fopr and fg be a cover of minimum entropy and a cover
returned by the greedy algorithm, respectively. Then we have ENT(fg) <
ENT(fOPT) +loge.

Proof. Fori=1,...,k, we let X; denote the i-th part of fopr and x; = |X;|. For
v €V, we let a, be the size of the part of f; containing v. We claim that the
following holds for all v and all i:

[Ta = x. (3)
veX;
Let us consider the points of X; in the order in which they were assigned to
sets of . by the greedy algorithm, breaking ties arbitrarily. Consider the j-th
element of X; assigned, say v. In the iteration when v was assigned, the greedy
algorithm could have picked set S;. Because at that time at most j — 1 points of
X; were assigned, at least x; — j 4 1 points of S; were unassigned, and we have
a, > x; — j+ 1. This implies the claim.
We now rewrite the entropy of fi as follows:

ENT(f5) :—721 :—7221 :—7210

vEV l 1veX; i=1 veX;

By Inequality (3) and the first inequality of Lemma 1, we then have:

Xi

ENT(f5) <_721 Jg—leog a

nx, i: ki eXi

< ENT(fOPT) + loge

O

Finally, we mention that MESC has a natural weighted version in which
each point v € V has some associated probability p,. Again, we can associate to
each cover f a probability distribution (qi,...,qx). This time, we let ¢; denote
the probability that a random point is assigned to S; by f, that is,

qi = Z Py
vef=1(S)

The goal is then to minimize (2), just as in the unweighted version. The greedy
algorithm easily transposes to the weighted case, and so does our analysis. This



is easily seen when the probabilities are rational. Indeed, let K be a positive
integer such that Kp, is integral for all points v. Now replicate each point in
the ground set Kp, — 1 times. Thus we obtain an unweighted instance which
is equivalent to the original weighted instance, in the following sense. The op-
timum values of the two instances are equal (Lemma 2, given below, forbids
replicated versions of a point to be assigned to different sets) and the behavior
of the greedy algorithm on the new instance is identical to its behavior on the
original instance. The case of real probabilities follows by a continuity argu-
ment.

3 Hardness of Approximation

Before turning to the main theorem of this section, we state a lemma which
helps deriving good lower bounds on the optimum. Let ¢ = (¢;) and r = (r;) be
two probability distributions over N*. If Zle ri> Zle g; holds for all ¢, we say
that g is dominated by r. The lemma tells us that in such a case, the entropy of ¢
is at least that of r, provided that ¢ is non-increasing (see, e.g., [9] for a proof).

Lemma 2. Let g = (q;) and r = (r;) be two probability distributions over N
with finite support. Assume that q is non-increasing, that is, q; > qi+1 for i > 1.
If q is dominated by r, then we have ENT(q) > ENT(r).

We now prove that no polynomial-time algorithm for MESC can achieve
a better constant approximation guarantee than the greedy algorithm, unless
P = NP. Halperin and Karp [8] gave a polynomial time approximation scheme
(PTAS) for the problem. Our result does not contradict theirs since the PTAS
they designed is multiplicative, i.e., returns a solution whose cost is most (1 — €)
times the optimum.

Theorem 2. Forevery € >0, it is NP-hard to approximate the minimum entropy
set cover problem within an additive term of (1 — €)loge.

Proof. A 3SAT-6 formula is a CNF formula in which every clause contains ex-
actly three literals, every litteral appears in exactly three clauses, and a variable
appears at most once in each clause. Such a formula is said to be §-satisfiable if
at most a O-fraction of its clauses are satisfiable. It is known that distinguishing
between a satisfiable 3SAT-6 formula and one which is §-satisfiable is NP-hard
for some & with 0 < § < 1, see Feige et al. [5]. In the latter reference, the
authors slightly modified a reduction due to Feige [3] to design a polynomial-
time reduction associating to any 3SAT-6 formula ¢ a corresponding set system
S(@) = (V,.). They used the new reduction to prove that the minimum sum



set cover problem is NP-hard to approximate to within 2 — € on uniform regular
hypergraphs (see Theorem 12 in that paper). For any given constants ¢ > 0 and
A >0, it is possible to set the values of the parameters of the reduction in such
a way that:

— the sets of . have all the same size n/f, where n denotes the number of
points in V;

— if ¢ is satisfiable, then V can be covered by ¢ disjoint sets of .7;

— if ¢ is O-satisfiable, then every i sets chosen from .# cover at most a 1 —
(1—1/t)" + A fraction of the points of V, for 1 <i < ct.

Although we do not need this fact, we mention that every point of V' is contained
in the same number of sets of ..

Suppose from now on that ¢ is a 3SAT-6 formula which is either satifiable
or O-satisfiable, and denote by fopr an optimal solution of MESC with input
S(@). For 1 <i <k, let g; = qi(fopr) be defined as in (1). For i > k, we let
qi = 0. Letting ¢ denote the sequence (g;), we assume without loss of generality
that ¢ is non-increasing.

If ¢ is satisfiable, then it follows from Lemma 2 that the optimal solution
consists in covering V with ¢ disjoint sets. Hence, ENT( fopr) = ENT(g) = log?
in this case. Assume now that ¢ is §-satisfiable. Let & = €/2, 4 = a?/2—a?/6
and c = —InA.

Claim 1 The following lower bound on the optimum holds:
ENT(gq) > logt+ (1 —¢€/2)loge+o(1),
where o(1) tends to zero when t tends to infinity.

Claim 1 implies that any algorithm approximating MESC within an addi-
tive term of (1 — €)loge can be used to decide whether ¢ is satisfiable or -
satisfiable. Indeed, as noted in [5], # may be assumed to be larger than any fixed
constant. The theorem then follows.

In order to prove the claim, we define a sequence r = (r;) as follows (see
Figure 2 for an illustration):

1/t for 1 <i<Jot],
(1—1/t)=1/t for [ot] +1<i< |ét],
1=y fori=|a)+1,

0 otherwise,

ri =

where ¢ is a real such that

[O;ﬂ+(1—l/t)[w]—(1—1/t)5':1. (4)



By our choice of parameters, we can assume [o| + 1 < [ét] by lowering € if
necessary. From the definition of ¢ we have

r=1— (=1 -1/l <1,

Therefore, the sequence r is a probability distribution over N*.

Fig. 2. The shape of distribution r = (r;) fort =20 and € = 1/2

By the properties of S(¢) we have

1

4 14
gi<t/t and Y g<1-(1-1/t)'+2 5)
=1

i=1
for 1 </ < |ct], and it can be checked that ¢ < ¢ for ¢ large enough.

Claim 2 Sequence q is dominated by sequence r, that is, for all £ we have

¢ ¢
Ya<) (6)
i=1 i=1
For 1 </ < [at], Inequality (6) readily follows from the definition of r and
Equation (5). Notice that we have
1—(=1/)¥ 4 a<1-(1—a+a?2—a/6)+A=a<[at]/t ()

whenever ¢ is large enough. Hence, for [or| +1 < ¢ < | ét |, from Equations (5)
and (7) we derive

‘
g <1—(1-1n)'+A=1-(1-1/) 42+ Y (1-1/t)""/t
! i=[ar]+1

<fot]/t+ i (l—l/t)"“/t:ir,-.
i=1

i=[ar]+1

™~



Finally, note that (6) is also true for ¢ > |ét|, as the ¢;’s and r;’s both sum up
to 1. It follows that ¢ is dominated by r. In other words, Claim 2 holds true. By
Lemma 2, we have ENT(g) > ENT(r). In order to show Claim 1, it then suffices
to prove the following claim.

Claim 3 We have ENT(r) > logt+ (1 —¢€/2)loge+o(1).

The entropy of r can be expressed as follows:

lér]+1 lét]

ENT(r) = — Z rilogri=— Y rilogri+o(1)
i=1 i=1
2 PO < B T V) L et V10 Lo
= logt Z ” log . +o(1)

i=[ot]+1

1 { Lét] -

=al —log—— i—1)(1—1/1)""
alogt+ - log Y, (—1)(1—1/r)

t—1 i=[ar]+1

Let]

+llogt Y (1—1/0""+o(1).
T
i=lar]+1

Let B := lim;_... ¢. In the sum above, the second and third terms are asymptot-
ically equal to respectively loge - (1 +a)e * — (1+B)e P) and logt - (e=* —
e P ). This is shown in Lemmas 3 and 4 in the appendix. It follows from Equa-
tion (4) that

B=—In(ac+e *—1).

Therefore, we can rewrite the entropy of r as

ENT(r) = alogt +loge- ((1+a)e % — (1+B)e P) +1logt- (7% — e P)+0(1)
=(a+e *—ePylogt+ ((1+a)e™®—(1+B)e P)loge+o(1)
=logr+ ((1+a)e * = (1+B)e P)loge+o(1).

By Lemma 5 (see the appendix), we know that ae=® — Be P is nonnegative
provided & is sufficiently small. Claim 3 follows then by noticing

(1+a)e *—(1+BeP=1-a+ae®*—BeP>1—a=1-¢/2.

Hence, Claim 1 and the theorem follow. O



4 Graph Colorings with Minimum Entropy

There are situations where the collection of sets . = {Sj,..., Sk} input to the
minimum entropy set cover problem is given implicitly. One possibility, which
is the focus of this section, is to define .7 as the collection of all inclusion-wise
maximal stable sets of some (simple, undirected) graph G = (V, E). The corre-
sponding variant of MESC is known as the minimum entropy coloring problem
(MEC). It stems from information theory, having applications in zero-error cod-
ing with side information [1]. Notice that, by our choice of ., every cover f
can be regarded as a (proper) coloring of the graph G.

The results of Section 2 directly apply to MEC. The greedy algorithm, trans-
posed to the setting of MEC, constructs a coloring of G by iteratively removing
a maximum size stable set from G. Of course, its running time can no longer be
guaranteed to be polynomial, unless P = NP. Theorem 1 implies the following
result, which again holds in the weighted case.

Corollary 1. Let fopr and fg be a coloring of G with minimum entropy
and a coloring returned by the greedy algorithm, respectively. Then we have
ENT(fc) < ENT(fopr) +loge.

The bound given in Corollary 1 is asymptotically tight because the bad
MESC instances described in the beginning of Section 2 can be easily turned
into MEC instances. Indeed, for a given /, it suffices to consider the graph G ob-
tained from the complete graph on V by removing every edge which is entirely
included in some set of .%,.,; O Sine-

Clearly, the greedy algorithm runs in polynomial time when restricted to
graphs in which a maximum weight stable set can be found in polynomial time.
This includes perfect graphs [7] and claw-free graphs [10]. So MEC can be
approximated within an additive term of loge on such graphs, in polynomial
time. In contrast, for arbitrary graphs it is known that for any € > O there is
no polynomial-time approximation algorithm whose additive error is bounded
by (1 — €)logn unless ZPP=NP. This was proved by the authors in [2] using as
a black-box an inapproximability result for the minimum cardinality coloring
problem due to Feige and Kilian [4].
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Appendix

Lemma 3. If o, B and ¢ are defined as in the proof of Theorem 2, then we have
1 P lét | '

—log — Z (i—1)(1—=1/t)"=loge-((1+a)e *—(1 +ﬁ)eil3)+o(1).
T i=lar]+1

Proof. For any positive integer ¢, we have

fz—l Y(1—=1/1)"~ le—l/t fl—l/t

i=1 i=1 i=1
(11— £+1 YA =1/0)" = (1=1/)F) —2(1—(1—1/1)")
#(1—( 1+£/z —1/0)") —t(1—= (1= 1/)").

It follows that we have

1 t lét ]

,log: (Z} (i—1)(1—=1/t)!
at|+1
llogtil [2(1—(1+ at] /o) (1=1/0)1) —1(1 = (1=1/1)!))

—1 (1—(1+[Oﬂﬂ/f)(l—l/t)[“”)+t(1—(1—1/z)W)}
= tlog " ((1+ [ar]/)(1= 1/0)[1 = (14 @} /)1 = 1/0) )
+logt_%((l—l/t)m_(1_1/t)(0!ﬂ). ®
Now, from &t — 1 < [ér] < é, we infer:

(1—-1/0)% < (1—1/0)l% < (1—1/)% ",

Because & = Bt +o(t) and (1 —1/t)°®) = 14-0(1), the upper and lower bound
given above on (1 — 1/¢)\%) are asymptotically equal to e B. Hence, we have
(1—1/0)\% = ¢=B 4 (1). A similar computation gives (1 —1/1)[®] = ¢=% 4
o(1). Hence, when 7 tends to o, the first term of (8) tends to loge- ((1+a)e™* —
(14 B)eP), and the second term tends to 0. The lemma follows. 0

Lemma 4. With «, B and ¢ defined as in the proof of Theorem 2 above, we have
Lét)

1 )
“logt Y. (1-1/t)""=logt-(e"*—eP)+o(1).
! i=[or]+1



Proof. Because we have

&l
Y, (—1yn=t=o((1-1/nl—(1—1/nk),
i=[ar]+1

it suffices to show that we have

logt- (1—1/1)[*1 —e=%) = (1) and 9)
logt - ((1—1/0)l) — =By = o(1). (10)
For all ¢, we have
V12 <11/t <e

and hence
(e M —1/2) @ < (1 = 1)) < g~ Tel)r, (11)

Using the Binomial theorem, we can bound the left-hand side of (11) as follows:

!—(Xﬂ (aﬂ ) )
(e—l/t o 1/2t2)[(xt] _ Z ( . >e—(]'aﬂ—l)/t(_1/2t2)z
i=0 \ !
[au]
> o larl/t (O‘ﬂ —([out]—i)/t 27\i
>e + ; < ;e (—1/2t7)

iodd

> ML Y (ar + 1) ()2 (—1/26%) 2T
=0

> e 19— ()2t 41/21%) -

= 1 o2/a 12)

Equations (11) and (12) together yield (recall that ¢ can be assumed to be large,
hence logt is positive):

_ _ 2
logt‘(e [O{l-‘/l_e a)—logt(a/Zt—l—l/Zt )TW

<logr-((1—1/0)1% —e=%) <logt- (e [/ —¢=®). (13)
From the implications

ar<far] <or+l=oa<[ar]/i<o+1/t=e @ <0l <o

we infer:
e %logt-(e " —1) <logr- (e ¥/ —¢=%) <.



Since log? - (e~'/* — 1) is asymptotically zero, both the upper and lower bound
in Equation (13) are asymptotically zero, and Equation (9) follows.
Finally, in order to prove that Equation (10) holds, note that we have

=1/ < (=1l < (1= 1/ = Lo =107,

Note also that we have (1—1/¢)% = [ar] /t + (1 —1/t)I*] — 1 by the definition
of & in Equation (4). Therefore, we can bound logz - ((1 —1/1)%) — ¢=B) as
follows (recall that e P = a4+ e~ % —1):

logt- ([ou] /1 +(1—1/0)%] — o — %)
<logr-((1—1/0)l —¢ By <
r—1 r—1 r—1

t
L _ [ot] 1 _ _ —a
log? t_l([ocﬂ/ﬂr(l 1/t) l-——a———e % — ).

From what precedes, both bounds are asymptotically zero. Therefore Equation
(10) follows. This concludes the proof. O

Lemma 5. Letting a = a(€) and B = B(€) be defined as in the proof of Theo-
rem 2, we have ae=* > Be P provided € is small enough.

Proof. Because B = —In(a+e~* — 1), we have to show
e > —In(a+e *—1)- (a+e *—1). (14)
For all o, we have

2 3 2
o o o o o
YN H_ > X e 1 <Y
y(I=3)=75 g =ate =7

and hence

2

—(lna——i-ln(l —%))

@
2 2

>—In(a+e *—1)-(ax+e *—1).

Now, as can be readily checked, for € sufficiently small (recall that a = €/2),

we have )

2
_ (04 o o o

The lemma follows. O



