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Abstract

The binary choice polytope appeared in the investigation of the binary choice prob-
lem formulated by Guilbaud (1953) and Block and Marschak (1960). It is nowadays
known to be the same as the linear ordering polytope from operational research
(Grötschel, Jünger and Reinelt, 1985). The central problem is to find facet-defining
linear inequalities for the polytope. Fence inequalities constitute a prominent class of
such inequalities (Cohen and Falmagne 1978, 1990; Grötschel, Jünger and Reinelt,
1985). Two different generalizations exist for this class: the reinforced fence inequal-
ities (Leung and Lee, 1994; Suck, 1992) and the stability-critical fence inequali-
ties (Koppen, 1995). Together with the fence inequalities, these inequalities form
the fence family. Building on previous work on the biorder polytope (Christophe,
Doignon and Fiorini, 2004), we provide a new class of inequalities which unifies all
inequalities from the fence family. The proof is based on a projection of polytopes.
The new class of facet-defining inequalities is related to a specific class of weighted
graphs, whose definition relies on a curious extension of the stability number. We in-
vestigate this class of weighted graphs which generalize the stability-critical graphs.
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1 Introduction

A wellknown problem of mathematical psychology and economics asks for a
characterization of the binary choice probabilities that are generated by ran-
dom linear orderings of the alternatives (Guilbaud, 1953; Block and Marschak,
1960). This problem was turned into the search for all facet-defining inequal-
ities of a certain (convex) polytope (Megiddo, 1977), thus dubbed the ‘bi-
nary choice polytope’. On the other hand, a polytope called the ‘linear order-
ing polytope’ appeared in operations research as a tool for building an opti-
mal solution to the linear ordering problem (Grötschel, Jünger, and Reinelt,
1985a,b). It took some time before it was realized that the two polytopes are
one and the same (see for instance Suck, 1992). In both disciplines, the cen-
tral problem is that of listing as much facet-defining inequalities as possible—
geometrically, one simply asks for facets. Because the problem of finding an
optimal linear ordering is known to be NP-complete (Karp, 1972), there is lit-
tle hope that a complete list of all facets will ever be established. Nevertheless,
it is interesting to produce new facets because each of them at the same time
gives a new necessary condition for binary probabilities to admit a random
representation, and can also be put to good use in the optimization problem.
In contrast, the multiple choice problem ashtonishingly admits an explicit so-
lution established by Falmagne (1978, 1979) (for a maybe more eliciting proof,
see Fiorini, 2004).

The first general scheme of facets of the binary choice vs. linear ordering
polytope was discovered both in mathematical psychology and in operations
research. Cohen and Falmagne (1978, 1990) and Grötschel et al. (1985b) in-
deed introduced each on their own a family of facets which surpasses the most
obvious facets (although at some time in the past, the latter were thought to
be the only ones). These facets are called the ‘fence inequalities’. Much later,
two distinct generalizations were proposed. First, introducing weights in the
basic fence inequalities produced the ‘reinforced fence inequalities’ (Leung and
Lee, 1994, followed by Suck, 1992, again illustrating parallel developments).
The second generalization led through several successive steps (McLennan,
1990; Fishburn, 1990; Koppen, 1995) to ‘stability-critical fence inequalities’.
Here appears a marvelous connection between two distinct topics (Koppen,
1995): the latter inequalities are essentially in a one-to-one correspondence
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with ‘stability-critical graphs’ (the simplest case, the fence inequality, corre-
sponds to complete graphs).

Our contribution consists in a unification of the above two generalizations of
fence inequalities via weighted graphs. To any weighted graph, we associate
an inequality that is valid for the linear ordering polytope. These inequali-
ties, which we call ‘graphical inequalities’, were first studied in the context
of ‘biorder polytopes’ by Christophe, Doignon, and Fiorini (2004). When a
graphical inequality defines a facet of the linear ordering polytope, the corre-
sponding weighted graph is called a ‘facet-defining graph’, or FDG in short.
Since FDGs generalize stability-critical graphs, we survey in Section 6 known
results about the latter graphs. In particular, we emphasize the role of the
‘defect’ in attempts to classify stability-critical graphs. Section 7 is devoted
to basic results on FDGs, some of them taken from Christophe, Doignon, and
Fiorini (2004). The following section introduces the ‘defect’ of a FDG and
establishes several of its properties. It concludes with the first steps into the
classification of FDGs with small defect.

To summarize, our contribution goes beyond providing a common generaliza-
tion for the fence family. We also establish a list of properties of the corre-
sponding FDGs. In this respect, our work is parallel to that of Lipták and
Lovász (2000, 2001) who also investigate a generalization of stability-critical
graphs in connection with (other) polytopes. Before focusing on FDGs, we
formally describe in Sections 2 and 3 the fence family and the graphical in-
equalities, respectively. Then in Section 4 we collect prerequisites on biorders,
relying on Doignon, Ducamp, and Falmagne (1984). Section 5 introduces a
projection from the linear ordering polytope onto the biorder polytope. The
projection is then used to prove that a graphical inequality is facet-defining
for the linear ordering polytope if and only if it is facet-defining for the biorder
polytope, except in one particular case.

This paper is heavily influenced by the work of Jean-Claude Falmagne. The
senior author (J.-P. D.) was exposed by him to biorders in 1982 and to the
binary choice polytope in 1988. All three authors are glad to dedicate their
present contribution to Jean-Claude.

2 Background and the Fence Family

Let X, Y be finite sets, and let R denote a relation from X to Y . As relations
are always considered as sets of ordered pairs in this paper, R is a subset of
X × Y . We often use ij as an abbreviation for (i, j) and write i R j when
the pair ij belongs to the relation R. In order to encode R geometrically, we
resort to the real vector space RX×Y , which has one coordinate per element
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of X × Y . The coordinate of the pair ij is denoted by xij. The characteristic
vector of R is the vector xR in RX×Y such that xR

ij = 1 if ij ∈ R and xR
ij = 0

otherwise.

Now let Z be a third finite set. A linear ordering on Z is a reflexive, transitive,
antisymmetric and complete relation on Z, i.e., from Z to Z. The binary
choice polytope or linear ordering polytope is defined as the convex hull in
RZ×Z = RZ2

of the characteristic vectors xL of all linear orderings L on Z.
We denote it by PZ

LO. Formally, we have

PZ
LO = conv{xL ∈ RZ2 | L is a linear ordering on Z}. (1)

The linear ordering polytope has precisely one vertex per linear ordering on
Z. Note that the whole polytope lies inside the affine subspace defined by the
equations xii = 1 for i ∈ Z and xij + xji = 1 for i, j ∈ Z, i 6= j. Because
these equations form a complete and irredundant system of equations for the
polytope, we have dim PZ

LO = |Z|(|Z| − 1)/2. We remark that besides the
obvious symmetries derived from permutations of the base set Z and arc
reversal, the linear ordering polytope admits ‘strange’ symmetries found by
McLennan (1990) and Bolotashvili, Kovalev, and Girlich (1999). The full group
of symmetries was characterized by Fiorini (2001).

Classes of facet-defining inequalities for the linear ordering polytope are now
described. Because they are all related to the fence inequalities (defined below),
we collectively refer to them as the fence family. In the rest of the section, X
and Y are disjoint subsets of Z with the same cardinality, and f is a bijective
mapping from X to Y . A fence inequality is any inequality of the form

∑

i∈X

xif(i) −
∑

i∈X,j∈Y
j 6=f(i)

xij ≤ 1. (2)

Notice that, traditionnally, the fence inequality is written in another, equiv-
alent form. This inequality was independently discovered by Grötschel et al.
(1985a) and by Cohen and Falmagne (1990). Although the latter reference was
published five years after the former, the working paper version dates back to
1978.

Proposition 1 (Grötschel et al., 1985a) The fence inequality (2) defines
a facet of the linear ordering polytope PZ

LO whenever |Z| ≥ 2|X| = 2|Y | ≥ 6.

A first idea to generalize the fence inequalities is to multiply all the terms of
the form xif(i) in Inequality (2) by an integer t with 1 ≤ t ≤ |X| − 2. The
resulting inequality,

∑

i∈X

t xif(i) −
∑

i∈X,j∈Y
j 6=f(i)

xij ≤ t(t + 1)

2
, (3)
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is called a reinforced fence inequality. Although these inequalities were given
a name by Leung and Lee (1994), they were implicitly known before as special
cases of Gilboa’s ‘diagonal inequalities’ (Gilboa, 1990, working paper of 1985).
They were independently discovered also by Suck (1992).

Proposition 2 (Leung and Lee, 1994; Suck, 1992) The reinforced
fence inequality (3) defines a facet of the linear ordering polytope PZ

LO whenever
|Z| ≥ 2|X| = 2|Y | ≥ 6 and 1 ≤ t ≤ |X| − 2.

A second generalization of the fence inequalities, due to Koppen (1995), arises
when the complete graph implicit in the structure of the fence inequality is
replaced by an arbitrary graph. Let thus G be any graph whose vertex set
V (G) equals X (for graph terminology, we usually follow Diestel, 2000). With
α(G) denoting the stability number of G, the inequality

∑

v∈V (G)

xvf(v) −
∑

{v,w}∈E(G)

(xvf(w) + xwf(v)) ≤ α(G) (4)

is easily seen to be valid for the linear ordering polytope. Koppen (1995)
gave the following characterization of the graphs G for which Inequality (4) is
facet-defining.

Proposition 3 (Koppen, 1995) Inequality (4) defines a facet of the linear
ordering polytope if and only if G is the one-vertex graph or G has at least
three vertices, is connected and stability-critical.

A graph G without isolated vertex is said to be stability-critical if its stability
number increases whenever an edge is removed from its edge set. When G
satisfies the conditions of Proposition 3, we call Inequality (4) a stability-
critical fence inequality.

Observe that when G is a complete graph with at least three vertices, Inequal-
ity (4) is a fence inequality. Hence stability-critical fence inequalities generalize
fence inequalities. Two more special cases of stability-critical fence inequalities
have been considered in the literature. The first special case occurs when G
is an odd cycle. The corresponding inequalities were discovered independently
by Grötschel et al. (1985a), McLennan (1990) and Fishburn (1990). The sec-
ond special case, which subsumes the first, occurs when G is the graph C`

n

with vertex set V = {1, 2, . . . , n} and edge set

E = {{i, j} | i, j ∈ V, 0 < min{|i− j|, |k − i− j|} ≤ `}, (5)

and with 3 ≤ 2` + 1 ≤ n. The corresponding inequalities were investigated
independently by Bolotashvili (1987) under the name (n, `+1)-fence inequali-
ties, and by Koppen (1991). It is known that α(C`

n) = bn/(`+1)c and that C`
n

is stability-critical if and only if ` + 1 divides n + 1. Apparently, Bolotashvili
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(1987) showed that the (n, ` + 1)-fence inequalities define facets of the linear
ordering polytopes, provided that ` + 1 divides n + 1.

We remark that by applying (nonobvious) symmetries of the linear order-
ing polytope to the facet-defining inequalities given above, one obtains new
facet-defining inequalities. Some of them were studied in the litterature, as for
instance the augmented fence inequalities of McLennan (1990) and Leung and
Lee (1994), and the augmented reinforced fence inequalities of Leung and Lee
(1994).

3 Graphical Inequalities

In the preceding section, we have seen two different generalizations of the fence
inequalities. The first changes the coefficients of the positive terms and the
second changes the structure of the inequality by substituting any graph for
the complete graph. It is quite natural to combine both generalizations, which
is precisely what is done in this section.

A weighted graph is a pair (G,µ) where G is a graph and µ is a function
assigning an integral weight µ(v) to each vertex v of G. Let S be any subset
of the vertex set of G. We denote by µ(S) =

∑
v∈S µ(v) the total weight of S.

The worth (or net weight) of S is the difference between the total weight of S
and the number of edges in the subgraph of G induced by S. This number of
edges, denoted as ||G[S]|| in Diestel (2000), will be given here by the simpler
notation ||S||. Thus the worth of S equals

w(S) = µ(S)− ||S||. (6)

If S is of maximum worth amongst subsets of V (G) we say that S is tight.
We define α(G,µ) to be the worth of a tight set in (G,µ). That is, we let

α(G,µ) = max
S⊆V (G)

w(S). (7)

When µ = 1l, i.e., when the weight of each vertex is 1, we have α(G, 1l) = α(G).
Hence the parameter α(G,µ) can be considered as a generalization of the
stability number of a graph to weighted graphs.

Let (G,µ) be a weighted graph whose vertex set V (G) equals X. We again
assume that X and Y are disjoint subsets of Z, with f a bijection from X to
Y . The graphical inequality of (G,µ) reads

∑

v∈V (G)

µ(v)xvf(v) −
∑

{v,w}∈E(G)

(xvf(w) + xwf(v)) ≤ α(G,µ). (8)
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Because of the choice of the right-hand side, the inequality is always valid for
the linear ordering polytope PZ

LO. When µ = 1l, it is identical to Inequality (4).
Morever, when G is a complete graph and µ = t1l with 1 ≤ t ≤ |X| − 2, the
graphical inequality is a reinforced fence inequality.

We say that a weighted graph (G,µ) is facet-defining when its graphical in-
equality defines a facet of the linear ordering polytope. A vertex of a weighted
graph is said to be degenerated if both its weight and its degree equal zero.
In order to avoid trivial cases, we always assume that a weighted graph has
no degenerated vertex. We think that understanding the structure of facet-
defining graphs, in short FDGs, is a nice and important research problem. By
Proposition 3, this class contains all connected stability-critical graphs except
the complete graph K2. We survey some important results on stability-critical
graphs in Section 6, and adapt these results to the more general case of facet-
defining graphs in Sections 7 and 8. We also provide results about FDGs which
are of a new type.

Before starting to investigate FDGs, we need to establish when a graphical
inequality defines a facet of the linear ordering polytope. To this aim, we
make use of another polytope, namely the ‘biorder polytope’. In the next two
sections, we remind the reader about biorders and the definition and some
properties of the biorder polytope.

4 Biorders and the Biorder Polytope

Let X and Y be two finite sets. A relation from X to Y is a biorder when

i B j and k B ` imply i B ` or k B j (9)

for all elements i, k ∈ X and j, ` ∈ Y . While biorders received various
names, for instance ‘Guttman scales’ (after Guttman, 1944), ‘Ferrers rela-
tions’ (Riguet, 1951), ‘bi-quasi-series’ (Ducamp and Falmagne, 1969), the term
comes from Doignon et al. (1984) (where the case of infinite sets X and Y is
also considered). The number of biorders from X to Y is a function of only
|X| and |Y |, which is investigated in Christophe, Doignon, and Fiorini (2003).

The biorder polytope PX×Y
Bio was introduced in Christophe et al. (2004), with a

definition similar to that of the linear ordering polytope. Each biorder B from
X to Y is encoded by its characteristic vector xB, considered as an element of
the space RX×Y (points in this space have one coordinate xij for each ordered
pair ij in X×Y ). The convex hull of all points xB in RX×Y , for B any biorder
from X to Y , is the biorder polytope PX×Y

Bio . The biorder polytope PX×Y
Bio has

dimension |X| · |Y |.
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The graphical inequality has an even more natural definition for the biorder
polytope PX×Y

Bio than for the linear ordering polytope (cf. Equation (8)). As-
sume the weighted graph (G,µ) is such that V (G) = X, and consider any
bijective mapping f : X → Y . The graphical inequality of (G, µ) for PX×Y

Bio

reads

∑

v∈V (G)

µ(v)xvf(v) −
∑

{v,w}∈E(G)

(xvf(w) + xwf(v)) ≤ α(G,µ).

The following results are adapted from Christophe et al. (2004). The graphical
inequality is valid for PX×Y

Bio . It defines a facet if and only if the tight sets of
(G,µ) satisfy a technical condition that we will formulate in Proposition 4
after having introduced some concepts. Let (G, µ) be a weighted graph. We
denote by E(S) the collection of edges contained in the set S of vertices. To
each tight set T of (G,µ), we associate the affine equation

∑

v∈T

yv +
∑

e∈E(T )

ye = α(G,µ). (10)

We thus form the system of (G,µ), also described as T · Y = A, where
the rows of the matrix T correspond to tight sets of (G,µ), the vector Y
contains the real unknowns yv and ye for v ∈ V (G) and e ∈ E(G), and
A = [α(G,µ) α(G,µ) . . . α(G,µ)]t.

Proposition 4 (Christophe et al., 2004) A weighted graph (G,µ) is facet-
defining (that is, (G,µ) is a FDG) if and only if it has at least three vertices
and the system of (G,µ) has a unique solution.

The vector y defined by yv = µ(v) and ye = −1 for all v ∈ V (G), e ∈ E(G) is
always a solution to the system of (G,µ), so we require in Proposition 4 that
there is no other solution.

Assuming some relationships among X, Y and Z, we now proceed to show
that the graphical inequality is facet-defining for PX×Y

Bio if and only if it is facet-
defining for PZ

LO. A projection from PZ
LO onto PX×Y

Bio will be instrumental.

5 Projection of the Linear Ordering Polytope onto the Biorder
Polytope

Let Z be any finite set, and X, Y be disjoint, nonempty subsets of Z. To any
relation R on Z we associate the induced relation from X to Y , which is the
intersection R∩ (X×Y ). As we will now show, linear orderings on Z are then
exactly mapped onto the biorders from X to Y .
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Proposition 5 Let X, Y and Z be as above. Any linear ordering on Z induces
a biorder from X to Y . Conversely, every biorder from X to Y is induced by
a linear ordering on Z.

PROOF. The intersection of any linear ordering on Z with X×Y is a biorder
from X to Y , as easily seen. Hence the first part of the proposition holds. To
show the second part, let B be a biorder from X to Y . Then the relation R
on Z obtained from B by adding all pairs ji ∈ Y ×X with ij /∈ B is acyclic.
Hence R is contained in some linear ordering L on Z. By the choice of R, the
biorder from X to Y induced by L is exactly B. 2

We now build a projection from the linear ordering polytope PZ
LO onto the

biorder polytope PX×Y
Bio . First define the linear projection

π : RZ2 → RX×Y : x 7→ x′ = π(x), (11)

where x′ij = xij for ij ∈ X × Y . From Proposition 5, we see at once that
π maps the vertex set of the linear ordering polytope onto the vertex set
of the biorder polytope. Indeed, π maps a vertex xL of the linear ordering
polytope onto the vertex xB of the biorder polytope, where B = L∩ (X × Y )
is the biorder induced by L. As a consequence, π maps the linear ordering
polytope PZ

LO onto the biorder polytope PX×Y
Bio . By the proof of Proposition 5,

the vertices of the linear ordering polytope which are mapped by π to a given
vertex xB of the biorder polytope correspond to the linear extensions of an
acyclic orientation of the complete bipartite graph with color classes X and
Y determined by B.

We now switch to a more general setting in order to state and prove a lemma
which is instrumental for showing the main result of this section. Let P and Q
be two polytopes and let ρ̇ : P → Q denote a projection of polytopes, that is,
the restriction to P of an affine map ρ from the space in which P is defined to
the space in which Q is defined, mapping P onto Q. The projection ρ̇ yields a
lifting of the faces of Q to the faces of P : for every face F of Q the preimage
ρ̇−1(F ) = {x ∈ P | ρ(x) ∈ F} is a face of P . Consider a face F of Q. The
plank of F is the vector subspace defined by

plank F = lin{q − p | p, q ∈ P and ρ(p) = ρ(q) ∈ F}. (12)

Note that the the plank itself depends on a choice of origin in the ambient
space of P , but its dimension is always the same. As we now show, this vector
subspace is useful in computing the dimension of the preimage of a face.

Lemma 6 For any face F of Q, we have

dim ρ̇−1(F ) = dim F + dim plank F. (13)
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PROOF. Let W and V respectively denote the two affine subspaces spanned
by F and its preimage, respectively. Let o be a point in the relative interior of
ρ̇−1(F ). Taking o as an origin in V and its image ρ(o) as an origin in W , we
can regard V and W as vector spaces. The affine map ρ restricts to a linear
mapping R from V onto W . As is easily verified, the plank of F computed
with o as origin is simply the kernel of R. The lemma then follows from the
well-known equation dim V = dim W + dim ker R. 2

Before turning to the main result of this section, we note the following lemma.

Lemma 7 If the preimage ρ̇−1(F ) of a face F of Q is a facet of P , then F is
itself a facet of Q.

PROOF. If F is not a facet of Q then there exists a facet F ′ of Q which prop-
erly contains F . Now the preimage of F ′ properly contains the preimage of F ,
so the preimage of F ′ equals Q, contradicting the fact that ρ̇ is surjective. 2

We now go back to our initial case, where P = PZ
LO, Q = PX×Y

Bio and ρ = π. Let
π̇ denote the restriction of π to PZ

LO. Thus π̇ plays the role of ρ̇. Moreover, as
in Sections 2 and 3, we suppose |X| = |Y | and that some bijection f : X → Y
is given.

Proposition 8 Let (G,µ) be a weighted graph such that Inequality (8) defines
a facet F of PX×Y

Bio . Then the preimage of F under π̇ is a facet of PZ
LO, unless

(G,µ) = (K2, 1l).

PROOF. Since the assertion is easily verified when G has at most two
vertices, we can assume that G has at least three vertices. Set q = |Z|,
m = |X| = |Y |. In virtue of the trivial lifting lemmas for linear ordering
polytopes (Grötschel et al., 1985a), we may assume q = 2 m, that is, X and
Y partition Z. It suffices then to prove

dim plank F ≥ dim PZ
LO − dim PX×Y

Bio =
q(q − 1)

2
−m2. (14)

Indeed, this inequality together with Lemma 6 implies that the dimension of
the preimage of F is at least that of a facet of the linear ordering polytope. On
the other hand, the preimage of F is not the whole linear ordering polytope
because F is a proper face and π is surjective, hence π̇−1(F ) is a facet of PZ

LO.

Notice that the right-hand side of Equation (14) is the number of unordered
pairs {k, k′} such that k, k′ ∈ X or k, k′ ∈ Y . We denote by ekk′ the vector
in the canonical basis of RZ2

that corresponds to the pair kk′. Let us show
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that for all i, i′ ∈ X with i 6= i′, we get eii′ − ei′i ∈ plank F . As a similar
argument can be given for all j, j′ ∈ Y with j 6= j′, we are done because
altogether these 2 ·m(m− 1) vectors generate a linear subspace of dimension
2 · (m(m− 1)/2) = q(q − 1)/2−m2.

Case 1: {i, i′} ∈ E(G). By Proposition 11(C3) in Christophe et al. (2004),
or by Proposition 11(C4) of Section 7, there exists a tight set S avoiding
both i and i′. Pick any linear ordering M on S and list the elements of S
by increasing ranks as s1, s2, . . . , s`. Then B = {xf(y) | xy ∈ M} is a
biorder from X to Y whose characteristic vector is a vertex of F , accord-
ing to Proposition 6 in Christophe et al. (2004). Any linear ordering L on
Z which has Y \ f(S) as initial set, X \ S as final set and which satisfies
s1 Lf(s1) Ls2 Lf(s2) L . . . L s` Lf(s`) induces B on X × Y . There exist two
such linear orderings L1 and L2 with L1 \ L2 = {ii′} and L2 \ L1 = {i′i}. It
follows xL1 − xL2 = eii′ − ei′i ∈ plank F .

Case 2: {i, i′} /∈ E(G). There exists some tight set S containing exactly one
vertex in {i, i′}. This is true because if no such S existed, the system in
Equation (13) of Christophe et al. (2004) would not have a unique solution,
contradicting the fact that F is a facet (or see Proposition 11(C7) in Section 7).
Without loss of generality, we assume i ∈ S and i′ /∈ S. Let M be any linear
ordering on S with i as its maximum, then B = {xf(y) | xy ∈ M} ∪ {i′f(i)}
is a biorder from X to Y such that xB is a vertex of F . The argument then
goes as in the first case above. 2

Using Lemma 7, we can easily show that the converse of Proposition 8 also
holds. Summarizing, we see that the following corollary holds.

Corollary 9 A graphical inequality is facet-defining for the linear ordering
polytope PZ

LO if and only if it is facet-defining for the biorder polytope PX×Y
Bio ,

except if the underlying weighted graph is (K2, 1l).

6 Stability-critical graphs

In this section, we briefly survey important results concerning stability-critical
graphs, thus complementing the report of Koppen (1995) (Section 7). We refer
the reader to Lovász and Plummer (1986) (pages 445–456) and Lovász (1993)
(pages 64–65) for a more detailed account.

We remind the reader that a graph is stability-critical if it has no isolated
vertices and removing any of its edges increases its stability number. The
class of stability-critical graphs was first studied by Erdős and Gallai (1961).
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They introduced the defect δ(G) = |V (G)| − 2 α(G) of a graph G and proved
its nonnegativity when G is stability-critical. The defect δ is a key parameter
in the theory of stability-critical graphs. Hajnal (1965) established an upper
bound of δ + 1 on the degree of a vertex and Surányi (1975b) proved that
equality in the previous bound can occur for at most δ + 2 vertices if δ > 1.
Sewell and Trotter (1993) also proved that every stability-critical graph with
defect at least two contains an odd subdivision of K4, that is, the graph K4

where each edge is replaced by a path with an odd number of edges.

From a general viewpoint, stability-critical graphs exhibit many different struc-
tures and a satisfying characterization seems out of reach. Nevertheless, more
insight was obtained by considering them for a fixed defect. Indeed, let G be a
connected stability-critical graph (note that the assumption of connectedness
is not really restrictive, since a non connected stability-critical graph consists
of connected stability-critical components). If δ(G) = 0, the theorem of Hajnal
(recalled in previous paragraph) implies G = K2. For δ(G) = 1, it also implies
that G is either a path or a cycle. Because paths and even cycles have defect
< 1 (and also are not stability-critical, except for K2), G must be an odd
cycle or, equivalently, an odd subdivision of K3. Andrásfai (1967) proved that
δ(G) = 2 occurs exactly when G is an odd subdivision of K4. More generally,
for each fixed natural number δ there is a finite set of graphs such that if
δ(G) = δ then G is an odd subdivision of one of those. This was first proved
for δ = 3 by Surányi (1975b) and later for all δ ≥ 1 by Lovász (1978).

As seen in the previous paragraph, the odd subdivision of a graph is used
as a closure operation when characterizing stability-critical graphs of a given
defect. In its simplest form, an odd subdvision only trisects one edge, that is, it
replaces the edge by a path composed of three edges. Thus, an odd subdivision
can be seen as a composition of a certain number of trisections. It turns out
that trisecting an edge is only but a special case of a more general method to
construct a connected stability-critical graph by ‘gluing’ two smaller ones. In
order to describe it, we need the fact that connected stability-critical graphs
are also 2-connected (Lovász, 1993). Let G1 and G2 be two connected stability-
critical graphs other than K2 and choose an edge {a, b} of G1 and a vertex c
of G2. Define the graph G upon basis of G1 and G2 as follows (an example is
given in Figure 1):

• take the disjoint union of G1 and G2,
• remove the edge {a, b},
• make each neighbor of c adjacent to exactly one vertex of {a, b}, ensuring

that a and b have each one at least one such neighbor, and
• remove the vertex c.

Observe that G is 2-connected but not 3-connected, since removing the vertices
a and b disconnects G. One can check also that the equality δ(G) = δ(G1) +
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Fig. 1. An example of the construction of new stability-critical graphs.

δ(G2) − 1 holds. When we let G2 = K3, this construction is equivalent to
trisecting the edge {a, b} of G1 and does not affect its defect (that is, δ(G) =
δ(G1)). Plummer (1967) first studied this construction when G1 is a complete
graph and later Wessel (1970a) extended its work by showing that, in the
above construction, the graph G must also be stability-critical and moreover
that any connected non 3-connected stability-critical graph different from K2

arises in this way.

We conclude this section by mentioning other references concerning stability-
critical graphs: Beineke et al. (1967); Erdős et al. (1964); Harary and Plummer
(1967); Sewell and Trotter (1995); Surányi (1975a, 1978, 1980); Wessel (1968,
1975, 1978, 1970b); Zhu (1989).

7 Facet-defining graphs

Now considering weighted graphs as in Section 3, we will generalize stability-
critical graphs. By Koppen’s result (Proposition 3), all connected stability-
critical graphs with at least three vertices (with a constant weight 1 on all
vertices) are such that their graphical inequality defines a facet of the linear
ordering polytope PZ

LO. Remember that the weighted graphs for which the
graphical inequality defines a facet of PZ

LO are the facet-defining graphs, or
FDGs for short. Corollary 9 states that exactly the same weighted graphs
produce a facet-defining inequality of the biorder polytope PX×Y

Bio (with some
relationships between Z and X, Y ), except for the trivial case (K2, 1l). In
this section we recall facts about FDGs obtained in Christophe et al. (2004)
and describe a first bunch of new results. The next section provides more
contributions about these graphs.

Let (G,µ) be a weighted graph. Proposition 4 in Section 4 indicates exactly
when (G,µ) is facet-defining, in terms of the system T ·Y = A of (G,µ). Here
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is a reformulation of the condition.

Corollary 10 A weighted graph (G,µ) is facet-defining if and only if it has
at least three vertices and for each nonzero valuation λ : V (G) ∪ E(G) → Z
there is a tight set T of (G,µ) with

∑

v∈T

λ(t) +
∑

e∈E(T )

λ(e) 6= 0. (15)

PROOF. By Proposition 4, (G,µ) is facet-defining if and only if G has at
least three vertices and moreover the system T · Y = A has only one solution.
The latter condition amounts to: the homogeneous system T · Y = 0 has only
the zero solution. In turn, this is equivalent to: the only linear combination of
column vectors of T which produces the zero vector has only null coefficients.
By contraposing, we get the claim. 2

Corollary 10 is useful to derive necessary conditions for a weighted graph to
be facet-defining, as illustrated in the next proposition.

Proposition 11 Let (G,µ) be a FDG. Then the following conditions hold:

(C1) G is 2-connected;
(C2) for all v ∈ V (G), we have 1 ≤ µ(v) ≤ deg(v)− 1;
(C3) for all {v, w} ∈ E(G), there is a tight set containing v and w;
(C4) for all {v, w} ∈ E(G), there is a tight set containing neither v nor w;
(C5) for all {v, w} ∈ E(G), there is a tight set containing v and not w;
(C6) for all v, w ∈ V (G), {v, w} /∈ E(G), there is a tight set containing either

both vertices v and w or none of them;
(C7) for all v, w ∈ V (G), {v, w} /∈ E(G), there is a tight set containing exactly

one vertex of {v, w}.

PROOF. (C1)–(C4) were already proved in Christophe et al. (2004) and we
refer to it for (C1) and (C2). We prove (C3)–(C7) by using Corollary 10 with
an appropriate choice for the valuation λ (this is a new proof for (C3)–(C4)).

(C3) Set λ({v, w}) = 1 and λ to zero elsewhere.
(C4) Set λ(v) = µ(v)−α(G,µ), λ(w) = µ(w)−α(G,µ), λ({v, w}) = α(G,µ)−

1, λ(u) = µ(u) for every u ∈ V (G) \ {v, w} and λ(e) = −1 for every
e ∈ E(G) \ {{v, w}}.

(C5) Set λ(v) = 1, λ({v, w}) = −1 and λ to zero elsewhere.
(C6) Set λ(v) = µ(v)−α(G,µ), λ(w) = µ(w)−α(G,µ), λ(u) = µ(u) for every

u ∈ V (G) \ {v, w} and λ(e) = −1 for every e ∈ E(G).
(C7) Set λ(v) = 1, λ(w) = −1 and λ to zero elsewhere.
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Fig. 2. Three specific FDGs.

It can easily be checked that each time the specific valuation λ ensures by
Corollary 10 the existence of a tight set with the desired property. 2

There exist FDGs showing that Conditions (C6) and (C7) of Proposition 11
cannot be strengthened as in (C3), (C4) and (C5), examples are given on
Figure 2: in the left graph there is no tight set containing the two vertices
with unit weight, in the central one there is no tight set avoiding the two
vertices with degree 3, and in the right one there is no tight set containing the
unit weight vertex and not the only vertex nonadjacent to it.

Proposition 3 states that all stability-critical graphs together with the weight
function 1l are facet-defining graphs, except for K2. Many more FDGs are
derived by applying together Corollary 9 and techniques of Christophe et al.
(2004), as we now explain. Let (G,µ) be a connected weighted graph. We say
that (G,µ) is a special facet-defining graph, abbreviated SFDG, if for each
v ∈ V (G) we have 1 ≤ µ(v) ≤ deg(v) − 1 and for each v, w1, . . . , wk ∈ V (G)
such that k = µ(v) and vw1, . . . , vwk ∈ E(G), there exists a tight set T of
(G,µ) containing v, w1, . . . , wk. These graphs are all FDGs, as shown by the
following proposition.

Proposition 12 (Christophe et al., 2004) A SFDG is facet-defining, that
is, any SFDG is a FDG.

We note that in particular connected stability-critical graphs other than K2

equipped with the weight function 1l are SFDG by Proposition 11(C3) and by
Proposition 3. There exist FDGs which are not SFDGs, the three graphs in
Figure 2 for instance.

We complete this section by reporting an interesting result from Christophe
et al. (2004) linking a weighted graph (G,µ) to the one obtained by taking
deg−µ as weight function, where deg assigns to each vertex its degree. We let
||G|| = |E(G)|.

Proposition 13 (Christophe et al., 2004) Let (G,µ) be a weighted graph.
Then the following holds:

• α(G, deg−µ) = α(G,µ)−
(
µ(V (G))− ||G||

)
,

• a set T ⊆ V (G) is tight in (G,µ) if and only if V (G) \ T is tight in
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(G, deg−µ), and
• (G,µ) is facet-defining if and only if (G, deg−µ) is facet-defining.

In order to illustrate Proposition 13, we remark that the central graph in
Figure 2 is obtained from the left one using the described modification of the
weights.

8 The defect of facet-defining graphs

The defect of a graph G was defined in Section 6 as δ(G) = |V (G)| − 2 α(G).
We generalize the concept to weighted graphs by letting the defect of (G,µ)
be

δ(G,µ) = µ(V (G))− 2 α(G,µ) (16)

(when µ = 1l, we have δ(G, µ) = δ(G)). We first observe an interesting fact.

Proposition 14 Let (G,µ) be a weighted graph. Then δ(G, µ) = δ(G, deg−µ).

PROOF. The latter equality results from Proposition 13 in view of the fol-
lowing computations:

δ(G,µ) = µ(V (G))− 2α(G,µ)

= µ(V (G))− 2
(
α(G, deg−µ) + µ(V (G))− ||G||

)

= 2||G|| − µ(V (G))− 2α(G, deg−µ)

= deg(V (G))− µ(V (G))− 2α(G, deg−µ)

= δ(G, deg−µ). 2

For a sequence T = (T1, T2, . . . , Tk) of k sets of vertices in a weighted graph
(G,µ), we introduce 3 (k − 2) sets, for 3 ≤ j ≤ k:

BT
j = (∪j−1

h=1Th) ∩ Tj, CT
j = (∩j−1

h=1Th) \ Tj, (17)

and

XT
j = BT

j ∪ CT
j . (18)

We will simply write Bj, Cj and Xj when the corresponding sequence T is clear
from the context. The sets Bj and Cj are disjoint. Moreover, Ci ∩Cj = ∅ for
3 ≤ i 6= j ≤ k. Here are some lemmas which will be instrumental in showing
results concerning the defect of a FDG.
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Lemma 15 Let (G,µ) be a weighted graph and T = (T1, T2, . . . , Tk) be a
sequence of subsets of V (G) with k ≥ 2. Then

µ(∪k
i=1Ti) + µ(∩k

i=1Ti) =
k∑

i=1

µ(Ti)−
k∑

j=3

µ(Xj). (19)

PROOF. For k ≥ 1, we let

Sk = µ(∪k
i=1Ti) + µ(∩k

i=1Ti).

Then
S1 = µ(T1) + µ(T1), S2 = µ(T1) + µ(T2), (20)

and for j ≥ 3:

Sj − Sj−1 = µ(∪j
h=1Th)− µ(∪j−1

h=1Th) + µ(∩j
h=1Th)− µ(∩j−1

h=1Th)

= µ(Tj) + µ((∪j−1
h=1Th) \ Tj)− µ(∪j−1

h=1Th)−
(
µ(∩j−1

h=1Th)− µ(∩j
h=1Th)

)

= µ(Tj)− µ((∪j−1
h=1Th) ∩ Tj)− µ((∩j−1

h=1Th) \ Tj)

= µ(Tj)− µ(Bj ∪ Cj)

= µ(Tj)− µ(Xj). (21)

Equation (19) follows from Equations (20)–(21). 2

For a sequence T = (T1, T2, . . . , Tk) of tight sets of a weighted graph (G, µ),
we will need to count separately the edges in the Ti’s and in the Xj’s. To this
aim, we define the ‘disjoint unions’ of the respective collections of edges:

TT = ∪k
i=1{(e, i) | e ∈ E(Ti)} = ∪k

i=1

(
E(Ti)× {i}

)
, (22)

and
XT = ∪k

j=3{(e, j) | e ∈ E(Xj)} = ∪k
j=3

(
E(Xj)× {j}

)
. (23)

As for XT
j = Xj, we simply write X and T when the corresponding sequence

T is well understood. The total number of tight sets of the weighted graph
(G,µ) under consideration will be denoted as s. A scenario of (G,µ) is a list
(T1, T2 , . . . , Ts) of all tight sets of (G,µ).

Lemma 16 Let (G,µ) be a FDG and T = (T1, T2, . . . , Ts) be a scenario of
(G,µ). Then

δ(G,µ) = |T| − |X|+
s∑

j=3

(w(Tj)− w(Xj)). (24)

Remember that ||S|| denotes the number of edges contained in the set S of
vertices.
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PROOF. By Conditions (C3) and (C4) of Proposition 11, we have ∪s
i=1Ti =

V (G) and ∩s
i=1Ti = ∅. Lemma 15 then gives

µ(V (G)) = µ(∪s
i=1Ti) + µ(∩s

i=1Ti)

=
s∑

i=1

µ(Ti)−
s∑

j=3

µ(Xj)

= w(T1) + ||T1||+ w(T2) + ||T2||+
s∑

j=3

(w(Tj) + ||Tj||)−
s∑

j=3

(w(Xj) + ||Xj||)

= 2α(G,µ) +
s∑

i=1

||Ti|| −
s∑

j=3

||Xj||+
s∑

j=3

(w(Tj)− w(Xj))

= 2α(G,µ) + |T| − |X|+
s∑

j=3

(w(Tj)− w(Xj)). 2

Building upon the previous lemma, we now show the positivity of the defect
of a FDG.

Proposition 17 The defect of any FDG (G,µ) satisfies δ(G,µ) ≥ 1.

PROOF. Taking again any scenario T = (T1, T2, . . . , Ts) of (G,µ), we refer
to Equation (24) in Lemma 16. Because Tj is assumed to be a tight set, we have
w(Tj)−w(Xj) ≥ 0. To prove δ(G,µ) ≥ 1, it suffices to show |X| ≤ |T|+1. We
first exhibit an injective mapping ϕ from X to T, built for any given scenario
T . Then for an appropriate choice of the scenario, we show the existence of
an element in T \ ϕ(X).

Let (e, j) ∈ X where e = {u, v}. Thus e ∈ E(Xj) for some j in {3, 4, . . . , s},
where Xj = Bj ∪ Cj. This leads to three cases.

Case 1. Assume e ∈ E(Bj). Because Bj ⊆ Tj, we have (e, j) ∈ E(Tj) × {j}.
We then set ϕ(e, j) = (e, j). Here is an illustration: the symbol ∗ indicates
where we select ϕ(e, j) (blank entries can be filled randomly with ∈ or /∈).

T1 T2 T3 T4 T5 T6 T7 . . . Tj

u ∈ ∈
v ∈ ∈

∗

Clearly, distinct pairs (e, j) satisfying e ∈ Bj have distinct images.
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Case 2. Assume e ∈ E(Cj). Because of the definition of Cj together with j ≥ 3,
we get e ∈ E(T1). We then set ϕ(e, j) = (e, 1).

T1 T2 T3 . . . Tj−1 Tj

u ∈ ∈ ∈ . . . ∈ /∈
v ∈ ∈ ∈ . . . ∈ /∈

∗

For each vertex x of e, the index j is the least value such that j ≥ 3 and
x /∈ Tj. Consequently, pairs (e, j) with e ∈ E(Cj) have distinct images by ϕ,
and all those images differ from the Case 1 images.

Case 3. Assume now u ∈ Bj and v ∈ Cj. Exchanging u and v if necessary, this
is the last possible case. Again, j is well defined from e. We consider subcases
according to the value c of the least index l such that u /∈ Tl (necessarily c 6= j
because u ∈ Bj ⊆ Tj).

Subcase 3.1. When c = 1, we take r = min{h | e ∈ E(Th)}, and set
ϕ(e, j) = (e, r).

T1 T2 . . . Tr−1 Tr . . . Tj−1 Tj

u /∈ /∈ . . . /∈ ∈ ∈
v ∈ ∈ . . . ∈ ∈ . . . ∈ /∈

∗

Because 1 < r and e /∈ E(Br), we conclude that all of these images are distinct
and moreover differ from the images obtained in Cases 1 and 2.

Subcase 3.2. When 2 ≤ c < j, we set ϕ(e, j) = (e, 1).

T1 T2 . . . Tc−1 Tc . . . Tj−1 Tj

u ∈ ∈ . . . ∈ /∈ ∈
v ∈ ∈ . . . ∈ ∈ . . . ∈ /∈

∗

Distinct pairs falling in this case have distinct images by ϕ. For a fixed edge
e, there cannot exist two distinct pairs (e, j) in X such that one fall in Case 2
and the other one in Case 3, so images from the actual subcase differ from
those obtained in all preceding cases.
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Subcase 3.3. The only remaining case is when j < c. We then set ϕ(e, j) =
(e, 2).

T1 T2 . . . Tj−1 Tj . . . Tc−1 Tc

u ∈ ∈ . . . ∈ ∈ . . . ∈ /∈
v ∈ ∈ . . . ∈ /∈ ∈

∗

Again, distinct pairs in this case have distinct images, and as it is the only case
where the pair (e, 2) can be selected, the injectivity of the resulting mapping
ϕ : X → T holds for any given scenario T .

Now, let e ∈ E(G) and choose tight sets T1, T2 such that e ⊆ T1 and e∩T2 = ∅
(these tight sets must exist by Proposition 11(C3) and (C4)). Take any scenario
starting with T1 and T2. Noticing (e, 1) ∈ T \ ϕ(X), we infer δ(G,µ) ≥ 1. 2

By Proposition 11, Condition (C2), we have deg(v) − µ(v) ≥ 1. Thus the
following result strengthens Proposition 17 (but its proof relies on arguments
given in the proof of Proposition 17).

Proposition 18 Let (G,µ) be a FDG and v be any of its vertices. Then
δ(G,µ) ≥ deg(v)− µ(v).

In the particular case of stability-critical graphs, Proposition 18 gives deg(v) ≤
δ(G) + 1, a theorem of Hajnal (1965) (recalled in Section 6).

PROOF. Let T be a scenario of (G,µ) in which the tight sets containing
v are listed before those not containing v. Let Tl be the first tight set of T
which does not contain v. The set N(v) of neighbors of v is partitioned into
the three following subsets:

X = (N(v) ∩ T1) \ Tl,

Y = N(v) \ (T1 ∪ Tl),

Z = N(v) ∩ Tl.

Consider the injective mapping ϕ : X → T built in the proof of Proposition 17
for the scenario T . Then for all x ∈ X we get either ({v, x}, 1) ∈ T \ ϕ(X), in
case x /∈ T2, or ({v, x}, 2) ∈ T \ ϕ(X), in case x ∈ T2. Also, for all y ∈ Y , we
have ({v, y}, r) ∈ T \ ϕ(X), where r = min{h | {vy} ∈ E(Th)}. Consequently,
|T| − |X| ≥ |X ∪ Y | = deg(v)− |Z|.

Moreover, we observe v /∈ Tl, v ∈ Xl and Bl ∩ N(v) = Z, Cl ∩ N(v) = ∅. It
follows, because Tl is tight, w(Tl)−w(Xl) ≥ w(Xl \{v})−w(Xl) = |Z|−µ(v).
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Combining these two observations with Lemma 16 yields (remember that s is
the total number of tight sets)

δ(G, µ) = |T| − |X|+
s∑

j=3

(w(Tj)− w(Xj))

≥ |T| − |X|+ w(Tl)− w(Xl)

≥ deg(v)− |Z|+ |Z| − µ(v)

= deg(v)− µ(v). 2

Corollary 19 Let (G,µ) be a FDG and v be any of its vertices. Then µ(v) ≤
δ(G,µ).

PROOF. By Proposition 13, (G, deg−µ) is also a FDG and by Proposi-
tion 14, δ(G,µ) = δ(G, deg−µ). Applying Proposition 18 to (G, deg−µ) and
v gives the claim. 2

Combining Proposition 18 and Corollary 19 gives an upper bound of 2δ(G,µ)
for the degree of a vertex in a FDG (G,µ). We conjecture a stronger bound.

Conjecture 20 Let (G,µ) be a FDG of defect δ(G,µ) at least two, and v be
any of its vertices. Then deg(v) ≤ 2δ(G,µ)− 1.

We note that, for each defect δ(G,µ) at least 2, there are examples of FDGs
reaching the bound in Conjecture 20. When (G, µ) is any SFDG (in the sense
of Section 7), we are able to prove an even stronger result.

Proposition 21 Let (G,µ) be a SFDG and v be any of its vertices. Then
deg(v) ≤ δ(G,µ) + 1.

PROOF. Let k = µ(v) and l = deg(v) − µ(v). By Proposition 11(C2), we
have l ≥ 1. When k = 1 the claim follows from Proposition 18, so we assume
k ≥ 2. Let W = {w1, w2, . . . , wk+l} be the set of neighbors of v. Let also
T = (T1, . . . , Ts) be a scenario of (G,µ) such that the first l + k + 1 tight sets
are specified as follows. For 1 ≤ i ≤ l + 1, the tight set Ti contains v, w1, w2,
. . . , wk−1, wk+i−1. For l+2 ≤ j ≤ l+k, the tight set Tj contains v, w1, w2, . . . ,
wj−l−2, wj−l, wj−l+1, . . . , wk+1. Finally, we let Tl+k+1 be a tight set such that
{w1, w2, . . . , wk} ⊆ Tl+k+1 and v /∈ Tl+k+1. All these tight sets exist by the
assumption that (G,µ) is a SFDG, and they all contain exactly k neighbors
of the vertex v.

Let now ϕ : X → T be the injective mapping defined for the scenario T as in
the proof of Proposition 17. Then ({v, wk+i}, i+1) ∈ T \ϕ(X) can be checked
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for 1 ≤ i ≤ l. Also, for 1 ≤ j ≤ k, we have wj ∈ Cl+j+1 and v, w1, w2, . . . ,
wj−1, wj+1, . . . , wk+1 ∈ Bl+j+1, giving w(Xl+j+1\{v})−w(Xl+j+1) ≥ 1. Using
Lemma 16 we then deduce

δ(G,µ) = |T| − |X|+
s∑

j=3

(w(Tj)− w(Xj))

≥ |T| − |X|+
l+k∑

j=l+2

(w(Tj)− w(Xj))

≥ |T| − |X|+
l+k∑

j=l+2

(w(Xj \ {v})− w(Xj))

≥ |T| − |X|+ k − 1

≥ l + k − 1 = deg(v)− 1. 2

The defect was shown to be a useful invariant for the investigation of stability-
critical graphs, in particular for attempting to classify these graphs (see Sec-
tion 6). In view of the current section, the same assertion applies also to the
weighted case. We now make a first elementary step in the classification of
FDGs.

Proposition 22 FDGs of defect one are the odd cycles with the weight func-
tion 1l.

PROOF. Let (G,µ) be a FDG of defect one. By Proposition 11(C2) and
Corollary 19, it follows that µ = 1l. By Proposition 3, the graph G must be a
stability-critical graph of defect one, that is, an odd cycle. 2

We are currently investigating FDGs of defect two. Similarly as for stability-
critical graphs (see Section 6), one could hope that all FDGs of a fixed defect
are generated by repeatedly applying some well-defined construction to a finite
number of basic graphs. We were able to design such a generation procedure
only for SFDGs of defect two, and are presently trying to extend the findings to
all FDGs of defect two. The case of a larger defect remains to be investigated.

9 Conclusion

The whole family of fence inequalities for the linear ordering polytope have
been subsumed to a general form of facet-defining inequalities. Called the
graphical inequalities, the latters are built from specific weighted graphs. The
weighted graphs which define facets in this way generalize stability-critical
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graphs. They are investigated, in particular with regard to their defect. We
point out that Corollary 9 and Proposition 13 imply that connected stability-
critical graphs produce a facet not only as in Koppen (1995) (that is, taken
with all weights equal to 1), but also when the weight of any vertex v is set
to the degree of v minus 1.

We mention that there are facet-defining inequalities for the linear ordering
polytope which are not graphical, for instance the Möbius inequalities: see,
e.g., Grötschel et al. (1985a), Borndörfer and Weismantel (2000) and Fiorini
(2005).
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Surányi, L., 1975b. On line critical graphs. In: Infinite and finite sets (Colloq.,
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