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Abstract

We consider combinatorial optimization problems arising in radiation therapy. Given a
matrix I with non-negative integer entries, we seek for a decomposition of I as a weighted
sum of binary matrices having the consecutive ones property, such that the total sum of the
coefficients is minimized. The coefficients are restricted to be non-negative integers. Here,
we investigate variants of the problem with additional constraints on the matrices used in
the decomposition. Constraints appearing in the application include the interleaf motion
and interleaf distance constraints. The former constraint was previously studied by Baatar
et al. (Discrete Appl. Math., 2005 ) and Kalinowksi (Discrete Appl. Math., 2005 ). The latter
constraint was independently considered by Kumar et al. (working paper, 2007 ) in the case
where coefficients of the decomposition are not restricted to be integers. For both constraints,
we prove that finding an optimal decomposition reduces to finding a maximum value potential
in an auxiliary network with integer arc lengths and no negative length cycle. This allows us
to simplify and unify the previous approaches. Moreover, we give a O(MN +KM) algorithm
to solve the problem under the interleaf distance constraint, where M and N respectively
denote the number of rows and columns of the matrix I and K is the number of matrices used
in the decomposition. We also give a O(M log(M) N + KM) algorithm solving the problem
under the interleaf motion constraint and hence improve on previous results. Finally, we
show the problem can still be solved in O(M log(M) N + KM) time when both constraints
are considered simultaneously.

Keywords: Decomposition of integer matrices, consecutive ones property, multileaf collima-
tor, radiation therapy.

1 Introduction

When a cancer is diagnosed, a physician can prescribe radiation therapy sessions. The aim of
these sessions is to destruct the tumor by exposing it to radiations while preserving the organs
located in the radiation field, called organs at risk. Note that in order to achieve this goal it is
necessary to use different radiation angles. Nowadays, in large hospitals, radiations are delivered
by a multileaf collimator (see Figure 1).

Designing a radiation plan is a complex optimization problem. Currently, the problem is solved
in three distinct phases. The input of the problem basically consists in a 3-dimensional model

∗This research is supported by an “Actions de Recherche Concertées” (ARC) projet of the “Communauté
française de Belgique”. Céline Engelbeen is a research fellow of the “Fonds pour la Formation à la Recherche dans
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‡Department of Mathematics, Université Libre de Bruxelles CP 216, Boulevard du Triomphe, 1050 Brussels,
Belgium. Email: sfiorini@ulb.ac.be.

1



Figure 1: The multileaf collimator at Saint-Luc Hospital (Brussels, Belgium).

of the patient’s body, usually obtained by computed tomography. The physician identifies the
tumor and the organs at risk within the 3-dimensional model and prescribes a lower bound on the
radiation dose for the tumor and an upper bound on the radiation dose for each organ at risk.
The radiation plan is then designed as follows:

The first phase is to choose the different radiation angles.
In the second phase an intensity function is constructed for each radiation angle, see, for

example, [11]. This function is encoded as an integer matrix I of dimension M ×N . Each entry
of the matrix corresponds to an elementary part of the radiation beam, called bixel (or beamlet).
The value of an entry gives the required dose for the corresponding bixel.

The component of the multileaf collimator that generates the radiation is a linear accelerator.
Those accelerators can only send a uniform radiation. This is why between the radiation source
and the patient there are between 40 and 60 pairs of metallic leaves which can block the radiation
(see Figure 2). The third phase in the design of a radiation plan is to describe how to realize the
given intensity matrix I for each radiation angle using the leaves of the multileaf collimator.

In segmented (or step-and-shoot) intensity modulated radiation therapy, the leaves do not
move when the radiation passes. There also exists a dynamic mode. In this mode, the leaves
continuously move during the radiation. We do not consider this mode in the present paper.

The third phase of the elaboration of a radiation therapy plan consists in modulating the
intensity matrix I as a weighted sum of binary matrices called segments. Entries equal to 1
indicate that the corresponding bixel is on and entries equal to 0 indicate that the radiation in
the corresponding bixel is blocked by a leaf. Each segment has to satisfy the consecutive ones
property, that is, has to have its ones grouped in a single block within each row (see Figure 2).
Moreover, the coefficients of the decomposition are usually constrained to be integers. This is due
to the fact that the linear accelerator cannot send a smaller dose than 1 cGray (this corresponds
to having a coefficient of 1 in the decomposition).

Consider for example the following intensity matrix:

I =


5 3 5 1
3 1 3 3
5 1 1 3
5 3 3 1

 .

A possible decomposition of I into segments is as follows:

I = 1


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 + 2


1 1 1 0
1 0 0 0
1 0 0 0
1 1 1 0

 + 2


1 0 0 0
0 0 1 1
1 0 0 0
1 0 0 0

 + 2


0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

 .
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Figure 2: The leaves of a multileaf collimator.

This decomposition describes the way the multileaf collimator will realize the intensity matrix.
First, the leaves take the shape of first matrix of the decomposition (all the leaves are open in
this case) and the patient is irradiated for 1 monitor unit (each bixel thus receives a dose of 1
cGray). Next, the leaves move and take the shape of the second matrix of the decomposition
and the patient is irradiated for 2 monitor units, and similarly for the last two matrices of the
decomposition. The sum of the coefficients of the segments exactly corresponds to the time during
which the patient is irradiated. We call this time the beam-on time. The problem we consider in
the present paper is to find a decomposition that minimizes the beam-on time. We refer to the
problem as the minimum beam-on-time problem (shortly, BOT ). We consider several variants of
this problem where further constraints are imposed on the segments. Any such problem can be
written as an integer program in the following way.

(BOT) min
∑
S∈S

αS

s.t.
∑
S∈S

αSS = I

αS ∈ Z+ ∀S ∈ S.

In the unconstrained case, S is the whole set of M ×N binary matrices satisfying the consecutive
ones property. In the presence of a constraint, S contains less matrices. Note that the above
integer programming formulation has O (MN2) variables and constraints.

Efficient methods for solving BOT in the unconstrained case have been proposed by several
authors, for example, Xia and Verhey [12], Siochi [2], Ahuja and Hamacher [5], Baatar, Hamacher,
Ehrgott and Woeginger [3], Engel [6], and Kalinowski [8]. In the next paragraphs, we recall the
approach of Baatar et al. [3].

Consider some segment S = (smn). Let `m and rm respectively denote the position of the left
and the right leaves in the m-th row of S (see Figure 3 for an example). Formally, we have

`m := min{n : smn = 1}, and

rm := 1 + max{n : smn = 1}.

If the m-th row of S is zero (that is, the radiation is blocked on row m), we let `m and rm be
any integers between 1 and N + 1 such that `m = rm. So in this case, the positions of the leaves
is not entirely determined by the segment S. For the unconstrained version of BOT this is not
a problem. But for the constrained versions we consider every leaf position has to be specified.
Consequently, we sometimes denote by ([`m, rm))m=1,...,M the segment whose m-th left and right
leaf are respectively in positions `m and rm, for m = 1, . . . ,M .
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1 2 3 4 5 6 7

Figure 3: A segment with one row, left leaf in position 4 and right leaf in position 6.

Let I = (imn) denote a non-negative integer matrix of size M ×N . For the sake of conciseness,
we call a matrix C1 if it is binary and satisfies the consecutive ones property. We would like to
decompose I as a weighted sum of C1 matrices with integer coefficients such that the sum of the
coefficients is minimized. Let ∆ = ∆(I) = (δmn) be the M × (N + 1) matrix defined as

δmn := imn − im,n−1 ∀m ∈ {1, . . . ,M}, ∀n ∈ {1, . . . , N + 1},

where we let im,0 = im,N+1 := 0. If δmn > 0 we know that imn > im,n−1. Therefore, for at least
imn−im,n−1 = δmn time units, the radiation has to pass through bixel (m, n) and not through bixel
(m, n− 1). To achieve this the left leaf in the m-th row has to be placed in position n for at least
δmn time units. So, the positive entries of the matrix ∆ give a lower bound on the time during
which the left leaves have to be in a certain position. Similarly, if δmn < 0, then imn < im,n−1.
The radiation has to pass through bixel (m, n− 1) and not through bixel (m, n) for at least −δmn

time units. We therefore have to place the right leaf of the m-th row in position n for at least
−δmn time units. So, the negative entries of the matrix ∆ give a lower bound on the time during
which the right leaves have to be in a certain position. Let ∆+ = (δ+

mn) and ∆− = (δ−mn), the
matrices of size M × (N + 1) defined by:

δ+
mn := max {0, ∆mn} and δ−mn := max {0,−∆mn} .

The above discussion immediately leads to the following lower bound on the total beam-on time.

Lemma 1.1. Letting OPT denote the beam-on time of an optimal solution to the unconstrained
minimum beam-on-time problem, we have OPT ≥ max {Tm : m = 1, . . . ,M} where

Tm :=
N+1∑
n=1

δ+
mn =

N+1∑
n=1

δ−mn (1)

is the unavoidable beam-on-time for the m-th row.

As observed by Baatar et al. [3], it turns out that the bound given by Lemma 1.1 is exact.
Other authors as, for example, Engel [6] and Kalinowski [8], have proved the same result. Since
all the rows of I are independent, each row can be decomposed separately. For the time being, we
consider the m-th row of I for some fixed m and seek a decomposition of this row with beam-on-
time Tm. We may regard the matrix ∆+ (resp. ∆−) as a multiset giving the number of unavoidable
left (resp. right) leaf positions, see Figure 4 for an illustration. Note that this naturally determines
an ordering of the unavoidable leaf positions.

The idea of the algorithm of Baatar et al. [3] is to match each unavoidable left leaf position
with some unavoidable right leaf position in order to obtain a decomposition of the given intensity
matrix I. We point out that it is important to carefully pick the matching otherwise one might
obtain a matrix different from I. A matching that always works is constructed by iteratively
associating the first unmatched unavoidable left leaf position with the first unmatched unavoidable
right leaf position.

The resulting algorithm can be extended in two ways. First, by considering all rows simul-
taneously and independently, the algorithm can produce a decomposition of the whole intensity
matrix I. Second, for the constrained case it is necessary to replace the pair of matrices ∆+ and
∆− by a more general pair of non-negative integer matrices D+ and D− such that D+−D− = ∆.
After implementing these two extensions, we obtain the standard decomposition algorithm (see
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∆+ = ( )5 0 0 2 0 , ∆− = ( )0 4 0 0 3

Figure 4: Left and right leaf positions for the row (5 1 1 3).

Algorithm 1 Standard decomposition algorithm.

Input: Non-negative integer matrices D+ and D− of size M × (N + 1) with D+ − D− = ∆
representing leaf positions, given as multisets D+

1 , . . . , D+
M and D−

1 , . . . , D−
M .

Output: A decomposition of I with the prescribed leaf positions.
while there exists some m ∈ {1, . . . ,M} such that D+

m 6= ∅ do
for all m ∈ {1, . . . ,M} such that D+

m 6= ∅ do
`m ← min D+

m; rm ← min D−
m

αm ← min{multiplicity of `m in D+
m, multiplicity of rm in D−

m}
end for
for all m ∈ {1, . . . ,M} such that D+

m = ∅ do
`m ← N + 1; rm ← N + 1
αm ← +∞

end for
α← min{α1, . . . , αM}
for all m ∈ {1, . . . ,M} such that D+

m 6= ∅ do
remove α copies of `m (resp. rm) from D+

m (resp. D−
m)

end for
output α times the segment ([`m, rm))m=1,...,M

end while

Algorithm 1 for a formal description). To solve the beam-on-time problem in the unconstrained
case, we take D+ = ∆+ and D− = ∆−.

We now sketch a proof of the correctness of the standard decomposition algorithm. The key
property we need to prove the correctness of the algorithm is the equation D+−D− = ∆. Letting
D+ := (d+

mn) and D+ := (d+
mn), the latter equation is equivalent to:

n∑
j=1

d+
mj −

n∑
j=1

d−mj = imn ∀m ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N + 1}. (2)

We claim that as soon Equation (2) is satisfied, Algorithm 1 outputs a decomposition of I whose
beam-on-time equals the size of the largest multiset D+

m or D−
m.

Recall that we let im,N+1 = 0 by convention. Thus Equation (2) for j = N +1 implies that the
multisets D+

m and D−
m have the same size. So at the end of the algorithm both D+

m and D−
m are

empty, for all m. Equation (2) for the other values of j implies that we always have `m ≤ rm. So
the algorithm outputs valid segments. The sum of all the coefficients α output by the algorithm
is clearly the size of the largest multiset D+

m or D−
m. It remains to verify that the sum of the

decomposition output by the algorithm is I. Fix some m ∈ {1, . . . ,M} and some n ∈ {1, . . . , N}.
The bixel (m, n) is irradiated exactly when the position of the left leaf is less than or equal to n
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and the position of the right leaf is strictly greater than n. Since the algorithm associates the first
unmatched leaf position with the first unmatched right leaf position, the bixel (m, n) is irradiated
during

∑n
j=1 d+

mj −
∑n

j=1 d−mj = imn times unit, as required.
As pointed out before, in the unconstrained case we take D+ = ∆+ and D− = ∆−. In this case

we have D+−D− = ∆ and thus Equation (2) is satisfied. By what precedes, Algorithm 1 finds a
decomposition of I whose beam-on-time equals the lower bound given by Lemma 1.1, that is, the
maximum unavoidable beam-on-time of a row. Therefore, the decomposition of I output by the
standard decomposition algorithm is optimal. The complexity of the algorithm is O(KM) where
K is the number of segments output. Note that we have K ≤ 2MN , so in particular the standard
decomposition algorithm runs in time O(M2N). Because the matrices ∆, ∆− and ∆+ and the
corresponding multisets can be computed from I in O(MN) time the unconstrained minimum
beam-on-time problem can be solved in O(MN + KM) time. This concludes our description of
the algorithm of Baatar et al. for the unconstrained case.

We now describe the two constraints studied here. These are all motivated by mechanical
constraints of certain types of multileaf collimators. The interleaf distance constraint asks that
the distance between the positions of two left (resp. right) leaves never exceeds a given constant c.
In other words, a segment S = ([`m, rm))m=1,...,M satisfies the interleaf distance constraint if and
only if we have

|`m − `m′| ≤ c ∀m, m′ ∈ {1, . . . ,M} (3)

|rm − rm′| ≤ c ∀m, m′ ∈ {1, . . . ,M}. (4)

This constraint appears briefly in Kumar, Ahuja and Kamath [9] under the name maximum leaf
spread constraint in the case the coefficients of the decomposition are not restricted to be integers.
Our main result is that BOT under the interleaf distance constraint is a polynomial problem and
can be solved in time O(MN + KM), that is, essentially as fast as the unconstrained problem.

The interleaf motion constraint (also known as the interleaf collision constraint or the inter-
digitation constraint) forbids the left leaf of some row to overlap the right leaf of an adjacent row.
A segment S = ([`m, rm))m=1,...,M satisfies the interleaf motion constraint if and only if we have

`m ≤ rm+1 ∀m ∈ {1, . . . ,M − 1}
`m ≤ rm−1 ∀m ∈ {2, . . . ,M}.

Baatar et al. [3] and Kalinowski [8] independently found algorithms to solve BOT under the
interleaf motion constraint. Baatar et al.’s algorithm has complexity O(M2N+KM). Kalinowski’s
algorithm has complexity O(OPT M2N), where OPT denotes the optimal beam-on-time. We
propose a new and faster algorithm of complexity O(M log(M) N + KM). Moreover, we show
that we can solve BOT under both constraints within the same time bound.

Before giving the outline of the paper in the next paragraph we briefly explain how the con-
strained problems are modeled. Recall that the matrices ∆+ and ∆− respectively describe un-
avoidable left and right leaf positions. Following Baatar et al., we consider a third matrix W
describing extra leaf positions. Thus the leaf positions (unavoidable or extra) to be used in the
decomposition can be read off from the matrices ∆+ + W and ∆− + W . We require that the
matrices ∆+ +W and ∆− +W have constant row sums. This requirement is related to a previous
remark: when the m-th row of a segment is zero then the positions `m and rm of the leaves for that
row should be specified. The constrained versions of BOT are modeled as integer programs whose
variables are the entries of W and the total beam-on-time, which is simply the row sum of any
row of ∆+ +W or ∆−+W . It turns out that the resulting integer programs have particularly nice
properties: their relaxations are integral and they can be solved by simple, direct algorithms. In
fact, we show that solving these IPs amounts to finding a maximum value potential in an auxiliary
network with integer arc lengths and no negative length cycle.

A network similar to one of the networks we consider was used by Kalinowski [8] to solve BOT
under the interleaf motion constraint. A key result proved by Kalinowski (generalizing a result of
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Engel [6] for the unconstrained case) is that the optimum beam-on-time is the maximum length
of a path in a network similar to our network D′ (defined in Section 2.2). In contrast, we show
that the optimum beam-on-time is the opposite of the minimum length of a path in D′. Thus our
approach unifies the approaches of both Baatar et al. and Kalinowski. In fact, our approach also
considerably simplifies the previous approaches.

The rest of the paper is organised as follows: In Section 2 we describe how the constraints
are modeled. In Section 2.1, we prove that BOT remains polynomial under the interleaf distance
constraint. Section 2.2 focuses on the interleaf motion constraint. After recasting the results of
Baatar et al. in our framework we indicate how to deal with both constraints at the same time.
Finally, our fast algorithms for the constrained minimum beam-on-time problems are given in
Section 3.

2 Modeling the Constrained Problems

2.1 The Interleaf Distance Constraint

In this section we consider the problem of minimizing the beam-on time with the interleaf distance
constraint. This constraint asks that the distance between the end of two left (or two right)
leaves cannot be bigger than a constant c, see Figure 5 for an example with c = 2. A segment
S = ([`m, rm))m=1,...,M respects the interleaf distance constraint if and only if the inequalities (3)
and (4) hold.

ok bad

Figure 5: When c = 2, the left segment respects the interleaf distance constraint while the right
segment does not because the first left leaf is in position 4 and the last is in position 1.

In order to motivate our model, we first consider the particular case where the intensity matrix I
is such that all its rows have the same unavoidable beam-on time, that is, T1 = T2 = · · · = TM =: T
(cf. Equation (1)). For k = 1, . . . , T , let `k

m (resp. rk
m) denote the k-th unavoidable left (resp. right)

leaf position in the m-th row of I.

Observation 2.1. When all rows of the intensity matrix I have the same unavoidable beam-on
time, say T , there exists a decomposition of I of beam-on-time T satisfying the interleaf distance
constraint if and only if we have

|`k
m − `k

m′| ≤ c and |rk
m − rk

m′| ≤ c

for all k ∈ {1, . . . , T}, and all m, m′ in {1, . . . ,M}. In particular, we can tell in polynomial time
if such a decomposition of I exists.

Proof. To show the “if” direction we simply use the standard decomposition algorithm (cf. Algo-
rithm 1) with D+ = ∆+ and D− = ∆−. Because the algorithm associates the first unmatched left
leaf position with the first unmatched right leaf position for each row and we have |`k

m − `k
m′| ≤ c

and |rk
m − rk

m′| ≤ c for all k, m and m′, all the segments output by the algorithm respect the
interleaf distance constraint.

We now prove the “only if” direction. Consider a decomposition of I satisfying the constraint
with beam-on-time T . Then all unavoidable leaf positions and no further positions are used.
Suppose, for instance, that there exists row indices m and m′ and some integer k such that
`k
m + c < `k

m′ . Since we have `k′
m ≤ `k

m for k′ < k and `k′′

m′ ≥ `k
m′ for k′′ > k, all first k unavoidable
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left leaf positions in the m-th row are incompatible with all last T − k + 1 unavoidable left leaf
positions in the m′-th row. Hence at most k−1 left leaf positions in the m′-th row are compatible
with the first k unavoidable left leaf positions in the m-th row, a contradiction.

Let us consider now the general case. Consider a decomposition of I into segments. Just as
we defined the difference matrix ∆ = ∆(I) of the intensity matrix I we can define a difference
matrix ∆(S) for any segment S. This allows us to “differentiate” the considered decomposition
of I in the following way:

I =
∑
S∈S

αSS =⇒ ∆(I) =
∑
S∈S

αS∆(S).

The last equation implies for the positive and negative parts of the considered matrices:∑
S∈S

αS∆+(S) = ∆+(I) + X and
∑
S∈S

αS∆−(S) = ∆−(I) + Y

for some non-negative integer matrices X and Y of size M × (N + 1). Recall that ∆+(I) and
∆−(I) respectively describe the unavoidable left and right leaf positions. We interpret any entry
xmn of X as the number of extra left leaf positions equal to n in the m-th row, and similarly for
the matrix Y . Now we have

0 =
∑
S∈S

αS∆(S)−∆(I) =
∑
S∈S

αS(∆+(S)−∆−(S))− (∆+(I)−∆−(I)) = X − Y,

so the matrices X and Y are equal. That is, the number of extra leaf positions does not depend on
the side (left or right). From now on, we will let W = X = Y . In conclusion, any decomposition
of I determines a unique matrix W describing the extra leaf positions.

Conversely, if we have a non-negative integer matrix W of size M × (N + 1) we can infer a
decomposition of I as follows. We consider that the matrices ∆+ + W and ∆− + W respectively
prescribe the left and right leaf positions of some decomposition. We then apply the standard
decomposition algorithm with D+ = ∆+ +W and D− = ∆−+W . This produces a decomposition
of I because we have D+ −D− = (∆+ + W )− (∆− + W ) = ∆.

In conclusion, the matrix W implicitely defines a decomposition. As noted before, we have
to require that ∆+ + W (or ∆− + W ) has constant row sums. This amounts to asking that the
number of left (or right) leaf positions is the same for all rows. Therefore, all segments used in
the decomposition have a well defined left and right leaf positions for each row. Observe that the
beam-on-time is then simply the row sum of any row ∆+ + W (or ∆− + W ).

We can now state and prove a result generalizing Observation 2.1. As a direct consequence, we
will obtain an integer programming formulation of BOT under the interleaf distance constraint.

Proposition 2.2. Let ∆+, ∆− be defined as above. Consider a matrix W of extra leaf positions
such that ∆+ +W (and hence ∆− +W ) has constant row sums. Then W induces a decomposition
of I satisfying the interleaf distance constraint if and only if, for all m, m′ ∈ {1, . . . ,M}, we have

j∑
n=1

(δ+
mn + wmn) ≤

j+c∑
n=1

(δ+
m′n + wm′n) ∀j ∈ {1, . . . , N − c + 1}; (5)

j∑
n=1

(δ−mn + wmn) ≤
j+c∑
n=1

(δ−m′n + wm′n) ∀j ∈ {1, . . . , N − c + 1}. (6)

The beam-on-time of the decomposition induced by W is the row sum of any row of ∆+ + W .

Before proving the proposition, we offer an interpretation of Equations (5) and (6). Equation
(5) says that the number of left leaf positions smaller or equal to j in the m-th row does not exceed
the number of left leaf positions smaller or equal to j + c in the m′-th row. The interpretation of
(6) is similar.
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Proof. Let T denote the row sum of any row of ∆+ + W , and let `k
m (resp. rk

m) denote the k-th
left (resp. right) leaf position for the m-th row, as described in ∆+ + W (resp. ∆− + W ). Then,
Equation (5) is equivalent to

|`k
m − `k

m′| ≤ c ∀k ∈ {1, . . . , T} (7)

and Equation (6) is equivalent to

|rk
m − rk

m′| ≤ c ∀k ∈ {1, . . . , T} (8)

Indeed, Equation (5) implies (7) because `k
m + c < `k

m′ for some k implies, for j = `k
m,

j∑
n=1

(δ+
mn + wmn) >

j+c∑
n=1

(δ+
m′n + wm′n).

Conversely, the latter equation implies that there exists some k such that `k
m + c < `k

m′ . A similar
argument yields the equivalence of Equations (6) and (8). Now we can readily follow the proof of
Observation 2.1 to conclude the proof of the result.

Thanks to Proposition 2.2, we can model the beam-on-time problem under the interleaf dis-
tance constraint as follows:

(BOT-IDC) min T

s.t.
N+1∑
n=1

(δ+
mn + wmn) = T ∀m; (9)

j∑
n=1

(δ+
mn + wmn) ≤

j+c∑
n=1

(δ+
m′n + wm′n) ∀j, m, m′ (m 6= m′); (10)

j∑
n=1

(δ−mn + wmn) ≤
j+c∑
n=1

(δ−m′n + wm′n) ∀j, m, m′ (m 6= m′); (11)

wmn ≥ 0 ∀m, n;
wmn ∈ Z ∀m, n. (12)

In order to solve the above IP we first rewrite it by considering new variables π0, πmj for 1 ≤ m ≤
M and 1 ≤ j ≤ N + 1 and πN+2. The relationship between the old and the new variables is as
follows:

πmj − π0 := −
j∑

n=1

wmn ∀m ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N + 1},

πN+2 − π0 := −T.

Furthermore, we replace the equality (9) by two inequalities. We thus obtain the following IP:

(BOT-IDC’) max πN+2 − π0

s.t. πN+2 − πm,N+1 ≤ −
N+1∑
n=1

δ+
mn ∀m;

πm,N+1 − πN+2 ≤
N+1∑
n=1

δ+
mn ∀m;

πm′,j+c − πmj ≤
j+c∑
n=1

δ+
m′n −

j∑
n=1

δ+
mn ∀j, m, m′ (m 6= m′); (13)

πm′,j+c − πmj ≤
j+c∑
n=1

δ−m′n −
j∑

n=1

δ−mn ∀j, m, m′ (m 6= m′); (14)
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πm1 − π0 ≤ 0 ∀m;
πmj − πm,j−1 ≤ 0 ∀m, j > 1;

πmj ∈ Z ∀m, j. (15)

Notice that the objective value of (BOT-IDC) is the opposite of the objective value of (BOT-IDC’).
Now let D = (V, A) be the network defined as

V = {0} ∪ {(m, j) : 1 ≤ m ≤M, 1 ≤ j ≤ N + 1} ∪ {N + 2};
A = {(0, (m, 1)) : 1 ≤ m ≤M} ∪ {((m, j − 1), (m, j)) : 1 ≤ m ≤M, 1 < j ≤ N + 1} ∪

{((m, N + 1), N + 2) : 1 ≤ m ≤M} ∪ {(N + 2, (m, N + 1)) : 1 ≤ m ≤M} ∪
{((m, j), (m′, j + c)) : 1 ≤ m, m′ ≤M, m 6= m′, 1 ≤ j ≤ N − c + 1},

with edge lengths defined as

`(0, (m, 1)) = 0;
`((m, j − 1), (m, j)) = 0;

`((m, N + 1), N + 2) = −
N+1∑
n=1

δ+
mn;

`(N + 2, (m, N + 1)) =
N+1∑
n=1

δ+
mn;

`((m, j), (m′, j + c)) = min
{ j+c∑

n=1

δ+
m′n −

j∑
n=1

δ+
mn,

j+c∑
n=1

δ−m′n −
j∑

n=1

δ−mn

}
.

The new variables determine a potential in the network D = (V, A) with respect to the length
function ` : A→ Z. Thus solving BOT under the interleaf distance constraint amounts to finding a
potential π whose value πN+2−π0 is maximum. The optimal beam-on-time is simply the opposite
of the distance (that is, the length of a shortest path) from vertex 0 to vertex N +2 in the network.

The following remarks are in order. Note that the only (simple) cycles in the network D contain
two opposite arcs and have length zero. So there are no negative length cycles in the network. In
fact D is essentially acyclic. Because all lengths are integral the integrality constraint (15) can
be removed from problem (BOT-IDC’). Indeed, the constraint matrix of (BOT-IDC’) is totally
unimodular since each row of the constraint matrix has exactly one 1, one −1 and 0 everywhere
else, and all right hand sides are integral. It follows that the integrality constraint (12) can also
be removed from problem (BOT-IDC).

Because an optimal potential can be computed in polynomial time, for example, via the
Bellman-Ford method [4, 7], we derive the following result which is our main result. For faster
algorithms, see Section 3.

Theorem 2.3. Solving BOT under the interleaf distance constraint can be done in polynomial
time.

Figure 6: Example of network D for the interleaf distance constraint.
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To conclude this section, we briefly discuss an example. Let I be the following intensity matrix:

I =

(
0 0 3 4
2 1 2 2

)
.

The corresponding network is given in Figure 6. After computing an optimal potential we obtain

W =

(
0 0 0 1 0
0 0 0 0 2

)
,

which yields the following optimal decomposition:

I =

(
0 0 1 0
1 0 0 0

)
+

(
0 0 1 1
1 1 1 1

)
+

(
0 0 1 1
0 0 1 1

)
+ 2

(
0 0 0 1
0 0 0 0

)
.

2.2 The Interleaf Motion Constraint

In this section we consider the interleaf motion constraint. Recall that this constraint forbids the
left leaf in some row to overlap the right leaf in an adjacent row (see Figure 7).

Figure 7: A segment that does not satisfy the interleaf motion constraint because the left leaf in
the second row overlaps the right leaf in the third row.

We can use exactly the same ideas as for the interleaf distance constraint for setting up a
model in this case. Baatar, Hamacher, Ehrgott and Woeginger [3] proved the following result.

Proposition 2.4. Consider a matrix W of extra leaf positions such that ∆+ + W (and hence
∆− + W) has constant row sums. Then W induces a decomposition of I satisfying the interleaf
motion constraint if and only if, for all m ∈ {2, . . . ,M} and all j ∈ {1, . . . , N + 1}, we have

j∑
n=1

(δ+
m−1,n + wm−1,n) ≥

j∑
n=1

(δ−mn + wmn), (16)

j∑
n=1

(δ+
mn + wmn) ≥

j∑
n=1

(δ−m−1,n + wm−1,n). (17)

The beam-on-time of the decomposition induced by W is the row sum of any row of ∆+ + W .

To obtain an IP model similar to (BOT-IDC) for BOT under the interleaf motion constraint
it suffices to replace the two constraints (10) and (11) by the constraints (16) and (17). We obtain
an IP formulation which we denote by (BOT-IMC). A simpler IP formulation (BOT-IMC’) can
be obtained by the same change of variables as above. Alternatively, it suffices to replace the two
constraints (13) and (14) in (BOT-IDC’) by the following two constraints:

πm−1,j − πmj ≤
j∑

n=1

δ+
m−1,n −

j∑
n=1

δ−mn, ∀j,∀m ≥ 2 (18)

πmj − πm−1,j ≤
j∑

n=1

δ+
mn −

j∑
n=1

δ−m−1,n, ∀j,∀m ≥ 2. (19)
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We obtain an IP formulation which we denote by (BOT-IM’). Once again the formulation models
a maximum value potential problem in some network. Let D′ = (V ′, A′) be the network whose
vertex set is the same as the previous network D = (V, A) and whose arc set is defined as follows:

A′ = {(0, (m, 1)) : 1 ≤ m ≤M} ∪ {((m, j − 1), (m, j)) : 1 ≤ m ≤M, 1 < j ≤ N + 1} ∪
{((m, N + 1), N + 2) : 1 ≤ m ≤M} ∪ {(N + 2, (m, N + 1)) : 1 ≤ m ≤M} ∪
{((m, j), (m− 1, j)) : 2 ≤ m ≤M, 1 ≤ j ≤ N + 1} ∪
{((m− 1, j), (m, j)) : 2 ≤ m ≤M, 1 ≤ j ≤ N + 1}.

The arc lengths are unchanged for the arcs that were already present in D. The lengths of the
new arcs are:

`((m, j), (m− 1, j)) =

j∑
n=1

δ+
m−1,n −

j∑
n=1

δ−mn;

`((m− 1, j), (m, j)) =

j∑
n=1

δ+
mn −

j∑
n=1

δ−m−1,n.

As discussed in the introduction, a network similar to D′ appears in Kalinowski [8]. The new
network D′ has cycles involving two, three or more arcs but any of these has non-negative length.
Indeed, for the cycles containing two arcs of the form ((m, j), (m− 1, j)) and ((m− 1, j), (m, j)),
we have

`((m, j), (m− 1, j)) + `((m− 1, j), (m, j)) =

j∑
n=1

δ+
m−1,n −

j∑
n=1

δ−m−1,n +

j∑
n=1

δ+
mn −

j∑
n=1

δ−mn

= im−1,j + imj ≥ 0.

An easy computation shows that all other cycles have length zero. It follows that BOT under the
interleaf motion constraint can again be solved in polynomial time, for example, by the Bellman-
Ford method [4, 7]. This yields a new and simpler derivation of a main result of Baatar et al. [3]
(see also Kalinowski [8]).

Theorem 2.5 (Baatar et al. [3]). Solving BOT under the interleaf motion constraint can be done
in polynomial time.

Moreover, the IP formulation (BOT-IMC’) and thus (BOT-IMC) both have integral relax-
ations. To our knowledge, this has not been observed before.

Figure 8: Example of network D′ for the interleaf motion constraint.

We now continue the example considered in the previous section and give the corresponding
network D′ in the figure 8. This time after computing a maximum value potential, we find

W =

(
0 1 0 0 0
0 0 0 0 2

)
.

To conclude this section we explain how to combine both constraints. In this case we have to
add the new constraints (18) and (19) to the model (BOT-IDC’), while keeping the constraints
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(13) and (14). This corresponds to adding new arcs in the network. Once again the resulting
network, which we denote by D′′ = (V ′′, A′′), has no negative cycles and the IPs have integral
relaxations.

Theorem 2.6. Solving BOT under the interleaf distance and interleaf motion constraints can be
done in polynomial time.

3 Fast Algorithms

3.1 The Interleaf Distance Constraint

In Section 2.1 we showed that solving BOT under the interleaf distance constraint amounts to
finding a potential π in the network D whose value πN+2−π0 is maximum. The optimal beam-on-
time is exactly the opposite of the length of a shortest path from vertex 0 to vertex N + 2 in the
network. As the network D is essentially acyclic we can adapt the standard dynamic programming
algorithm due to Morávek [10] to compute an optimal potential in time O(|A|) = O(M2N).
However, as we show here, an optimal potential can be computed in time O(MN). When we take
into account the time it takes to compute W and produce the decomposition from the potential
via the standard decomposition algorithm, we obtain an algorithm for BOT under the interleaf
distance constraint whose running time is O(MN + KM).

Our algorithm for computing an optimal potential first initializes π0 and πmj for m = 1, . . . ,M
and j = 1, . . . , c to 0. Next we consider the vertices (m, j) for j = c+1, then for j = c+2, and so
on until j = N . Each time a new vertex (m, j) is considered we compute its potential as follows:

πmj = min { πm,j−1 + ` (πm,j−1, πmj) , min { πm′,j−c + ` (πm′,j−c, πmj) : m′ 6= m } }

= min

{
πm,j−1, min

{
πm′,j−c +

j∑
n=1

δ+
mn −

j−c∑
n=1

δ+
m′n,

πm′,j−c +

j∑
n=1

δ−mn −
j−c∑
n=1

δ−m′n : m′ 6= m

} }
. (20)

For the M + 1 remaining vertices (1, N + 1), . . . , (M, N + 1) and N + 2 we compute all the
potentials at the same time.

Let Σ+ =
(
σ+

mj

)
and Σ− =

(
σ−mj

)
be the M × (N + 1) matrices defined as:

σ+
mj =

j∑
n=1

δ+
mn and σ−mj =

j∑
n=1

δ−mn.

Instead of computing the inner minimum each time in Equation (20), which would lead to a
O(M2N) algorithm for finding the potential, we compute only once the minimum µ+

j−c of the
expression πm′,j−c − σ+

m′,j−c for m′ = 1, . . . ,M and the minimum µ−j−c of the expression πm′,j−c −
σ−m′,j−c for m′ = 1, . . . ,M . Therefore, we have

πmj = min
{

πm,j−1, µ+
j−c + σ+

mj, µ−j−c + σ−mj

}
.

The resulting algorithm is formally described below (cf. Algorithm 2).
Algorithm 2 finds an optimal potential in time O(MN). To find the decomposition we first

construct the matrix W using wmj = πm,j−1 − πmj (for j = 1 we let πm,j−1 = π0 = 0). This
can also be done in O(MN) time. Then to produce the decomposition we use Algorithm 1
with D+ = ∆+ + W and D− = ∆− + W . Because the complexity of the standard decomposition
algorithm is O(KM), we obtain the following result. Recall that K denotes the number of matrices
output by the decomposition algorithm.

Proposition 3.1. The minimum beam-on-time problem under the interleaf distance constraint
can be solved in time O(MN + KM).
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Algorithm 2 Algorithm for finding an optimal potential (interleaf distance constraint).

Input: The intensity matrix I.
Output: An optimal potential π in network D.

Compute the matrices ∆+, ∆−, Σ+ and Σ− from I
π0 ← 0
for all m ∈ {1, . . . ,M} and j ∈ {1, . . . , c} do

πmj ← 0
end for
for all j ∈ {c + 1, . . . , N} do

µ+
j−c ← min{πm′,j−c − σ+

m′,j−c : m′ = 1, . . . ,M}
µ−j−c ← min{πm′,j−c − σ−m′,j−c : m′ = 1, . . . ,M}
for all m ∈ {1, . . . ,M} do

πmj ← min{πm,j−1, µ+
j−c + σ+

mj, µ−j−c + σ−mj}
end for

end for
µ+

N+1−c ← min{πm′,N+1−c − σ+
m′,N+1−c : m′ = 1, . . . ,M}

µ−N+1−c ← min{πm′,N+1−c − σ−m′,N+1−c : m′ = 1, . . . ,M}
πN+2 ← min{−σ+

m,N+1 + min{πm,N , µ+
N+1−c + σ+

m,N+1, µ−N+1−c + σ−m,N+1} : m = 1, . . . ,M}
for all m ∈ {1, . . . ,M} do

πm,N+1 ← πN+2 + σ+
m,N+1

end for

3.2 The Interleaf Motion Constraint

We proved in Section 2.2 that BOT under the interleaf motion constraint can be solved by de-
termining an optimal potential in the network D′. Because the network is highly structured we
can compute an optimal potential in time O(M log(M) N). Hence, if we add the time it takes to
compute W from the potential and produce the decomposition via the standard decomposition
algorithm, we conclude that BOT under the interleaf motion constraint can be solved in time
O(M log(M) N + KM). In contrast, the algorithm proposed by Baatar et al. has complexity
O(M2N + KM).

The basic principle of our algorithm is the same as for Algorithm 2, namely, we consider the
vertices (m, j) by nondecreasing value of j. The main difference is that in the network D′ all the
vertices (m, j) with a fixed j are in the same strongly connected component. So the potentials
of these vertices should be determined simultaneously. This is done by solving the following
subproblem.

Let a2, . . . , aM and b2, . . . , bM be 2(M−1) integers such that am ≤ bm for all m ∈ {2, . . . ,M}.
We seek a vector x ∈ ZM satisfying

am ≤ xm − xm−1 ≤ bm ∀m ∈ {2, . . . ,M}, (21)
xm ≤ 0 ∀m ∈ {1, . . . ,M} (22)

that simultaneously maximizes all its coordinates. Note that such a vector exists and is unique.
As we explain below, the subproblem can be solved in time O(M log M).

First we initialize x1 to 0 and xm to its upper bound xm−1 + bm for m = 2, . . . ,M . If the
resulting vector x is non-positive then it is the optimal solution and we are done. Otherwise we
compute any index p such that xp = max{xm : m = 1, . . . ,M} and we decrease all coordinates of x
by xp. So now x is non-positive and its p-th coordinate equals 0. Next we try to increase the other
coordinates of x. Because the coordinates of x whose index is greater than or equal to p cannot
be increased, we consider these values to be fixed. When we simultaneously increase all variables
xm with m < p, one of the two following events eventually occurs. First, some coordinate xq of
x can become 0. Second, xp−1 can by increased up to the point where we have ap = xp − xp−1.
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Any of these two events blocks us from increasing the variables xm with m < p. If the first event
occurs first, we replace p by q and continue increasing the values xm with m < p. Otherwise, the
second event occurs first, and we replace p by p − 1 and continue increasing the values xm with
m < p. We stop as soon as p equals 1. The final x vector is the optimal solution. This is because
each coordinate of x is either zero or maximal with respect to the value of one of the neighboring
coordinates of x.

Algorithm 3 Algorithm for solving the subproblem.

Input: integers a2, . . . , aM and b2, . . . , bM such that am ≤ bm for all m ∈ {2, . . . ,M}.
Output: an integer vector x with m coordinates satisfying Equations (21) and (22), and maxi-

mizing all its coordinates simultaneously.
h← 0
L← ∅ {L is a sorted associative array with its keys and values integer}
Add (1, h) to L {The first coordinate of an element of L is its key and the second its value}
for all m ∈ {2, . . . ,M} do

h← h + bm

Add (m, h) to L
end for
(p, δ)← any element of L with maximum value
for all m ∈ {p, . . . , M} do

xm ← L[m]− δ
Remove the element with key m from L

end for
while p > 1 do

(q, h)← any element of L with maximum value
δ1 ← 0− (h− δ) {Maximum increase for xq}
δ2 ← (xp − ap)− (L[p− 1]− δ) {Maximum increase for xp−1}
if δ1 ≤ δ2 then

δ ← δ − δ1

for all m ∈ {q, . . . , p− 1} do
xm ← L[m]− δ
Remove the element with key m from L

end for
p← q

else
δ ← δ − δ2

xp−1 ← L[p− 1]− δ
Remove the element with key p− 1 from L
p← p− 1

end if
end while

The algorithm described above can be implemented to run in time O(M log M), see Algo-
rithm 3. Algorithm 4 uses Algorithm 3 to find an optimal potential in D′ = (V ′, A′) in time
O(M log(M) N). The next result follows.

Proposition 3.2. The minimum beam-on-time problem under the interleaf motion constraint can
be solved in time O(M log(M) N + KM).

A straightforward modification of Algorithm 4 yields an algorithm for computing an optimal
potential in the network D′′. (It suffices to change the initializations of the upper bounds om in
the obvious way.)
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Algorithm 4 Algorithm for finding an optimal potential (interleaf motion constraint).

Input: The intensity matrix I.
Output: An optimal potential π.

Compute the matrices ∆+, ∆−, Σ+ and Σ− from I
π0 ← 0
for all m ∈ {1, . . . ,M} do

πm1 ← 0
end for
for all j ∈ {2, . . . , N} do

for all m ∈ {1, . . . ,M} do
om ← πm,j−1 {Upper bound on πmj from the vertices (m′, j′) with j′ < j}

end for
for all m ∈ {2, . . . ,M} do

am ← σ−mj − σ+
m−1,j + om − om−1

bm ← σ+
mj − σ−m−1,j + om − om−1

end for
Call Algorithm 3 to solve the subproblem defined by a2, . . . , aM and b2, . . . , bM

for all m ∈ {1, . . . ,M} do
πm,j ← xm + om

end for
end for
for all m ∈ {1, . . . ,M} do

om ← πm,N {Upper bound on πm,N+1 from the vertices (m′, j′) with j′ < N + 1}
end for
πN+2 ← min{−σ+

m,N+1 + om : m = 1, . . . ,M}
for all m ∈ {1, . . . ,M} do

πm,N+1 ← πN+2 + σ+
m,N+1

end for

Proposition 3.3. The minimum beam-on-time problem under the interleaf distance and interleaf
motion constraints can be solved in time O(M log(M) N + KM).
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We thank Martine Labbé for suggesting us to work on the beam-on-time problem in the early
stage of this research project. We thank Pierre Scalliet and Stefaan Vynckier from the radio-
therapy service of the “Cliniques universitaires Saint-Luc” (Brussels) and Stéphane Simon from
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[11] H.W. Hamacher, K.-H. Küfer, Inverse Radiation Therapy Planning- A Multiple Objective
Optimization Approach, Discrete Appl. Math. 118 (2002) 145–161.

[12] P. Xia, L.J. Verhey, Multileaf collimator leaf sequencing algorithm for intensity modulated
beams with multiple segments, Med. Phys. 25 (1998), 1424–1434.

17


