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SURFACES THAT DEFINE FACETS

SAMUEL FIORINI

Abstract. We find new facet-defining inequalities for the linear ordering polytope
generalizing the well-known Möbius ladder inequalities. Our starting point is to ob-
serve that the natural derivation of the Möbius ladder inequalities as {0, 1

2
}-cuts pro-

duces triangulations of the Möbius band and of the corresponding (closed) surface,
the projective plane. In that sense, Möbius ladder inequalities have the same ‘shape’
as the projective plane. Inspired by the classification of surfaces, a classic result in
topology, we prove that a surface has facet-defining {0, 1

2
}-cuts of the same ‘shape’ if

and only if it is nonorientable.
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1. Introduction

Let X be a finite set of cardinality n ≥ 3, and let Dn = (X,An) denote a complete
digraph with node set X and arc set An. Given nonnegative weights wij for each arc
ij ∈ An, the minimum linear ordering problem (MIN-LOP) is to find a linear order 4

on X whose total weight
∑

i≺j wij is minimum. The maximum linear ordering problem

(MAX-LOP) is defined similarly. Both problems are strongly NP-hard [14]. Because
a linear order 4 is an optimum solution of a MIN-LOP instance if and only if its
reverse < is an optimum solution of the MAX-LOP instance with the same weights,
both problems are equivalent as regards exact algorithms. Nevertheless, computing
approximate solutions seems to be easier for MAX-LOP [22] than for MIN-LOP [25].
Note that MIN-LOP is essentially the minimum dicycle cover problem (which is also
known as the minimum feedback arc set problem), and MAX-LOP is essentially the
maximum acyclic subgraph problem. Henceforth, we mainly focus on MIN-LOP and
prefer to regard the linear ordering problem as a minimization problem. The standard
formulation of MIN-LOP as an integer programming problem has one variable xij per
arc ij ∈ An, with xij = 1 if i ≺ j and xij = 0 otherwise, and reads:

minimize
∑

ij∈An

wijxij

subject to xij ≥ 0 ∀ij ∈ An,(1)

xij + xjk + xki ≥ 1 ∀ij, jk, ki ∈ An,(2)

xij + xji = 1 ∀ij ∈ An,(3)

xij ∈ Z ∀ij ∈ An.(4)

The standard formulation of MAX-LOP as an integer program is identical to the one
above, except that the goal is to maximize and that constraints (1) and (2) are usually
written in an equivalent form, as xij ≤ 1 and xij +xjk +xki ≤ 2 respectively. The MAX-
LOP formulation was introduced by Grötschel, Jünger & Reinelt [12, 13] and Reinelt
[24], and studied more recently by Goemans & Hall [11] and Newman & Vempala [23].
The convex hull of the points satisfying (1)–(4) is denoted by P n

LO, or sometimes PX
LO,

and is known as the linear ordering polytope or binary choice polytope, see [9, 8] for a
survey. This polytope has one vertex per linear ordering on X, hence the name.

A fair number of facet-defining inequalities of the linear ordering polytope have been
determined, including k-fence inequalities [13, 5], t-reinforced k-fence inequalities [26,
18], α-critical fence inequalities [15], Möbius ladder inequalities [13] and the inequalities
obtained from these by symmetries of the polytope [2, 7]. In this list, the only class
of inequalities for which a polynomial time separation algorithm has been published
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are the Möbius ladder inequalities [3]. By making n + 1 calls to any such algorithm,
one can solve the separation problem for all inequalities obtained from Möbius ladder
inequalities by symmetries. For a more direct approach, see [8]. It is very tempting to
look for generalizations of the Möbius ladder inequalities. This is the aim of the present
article. The following examples illustrate our approach.
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Figure 1. A Möbius ladder and the corresponding triangulation of the
projective plane.

Example 1. Let X = {1, 2, 3, 4, 5, 6} and M = {12, 23, 34, 41, 45, 56, 63, 61, 25} (see
Figure 1a). Note that in the figure, some vertices have to be identified. The inequality

(5)
∑

ij∈M

2xij ≥ 4

is a Möbius ladder inequality (a definition of these inequalities is given below in Sub-
section 4.2). It defines a facet of the linear ordering polytope. We now give a cutting
plane proof of the fact that the inequality is valid. More precisely, we show that it is a
{0, 1

2
}-cut for the system (1)–(3).

If we sum Inequality (1) for ij ∈ {23, 41, 45, 63, 61, 25} and Inequality (2) for ijk ∈
{123, 341, 634, 456, 561, 125}, and substract Equation (3) for ij ∈ {31, 46, 15}, the re-
sulting valid inequality reads

(6)
∑

ij∈M

2xij ≥ 3.

Because at a vertex of the linear ordering polytope the left hand side of (6) is an even
integer, we can add 1 to the right hand side of (6) while preserving its validity. Hence
we have proved that (5) is valid. In order to visualize the derivation better, we associate
to each inequality xij ≥ 0 that was used the oriented triangle ij∞ where ∞ /∈ X, and
to each inequality xij + xjk + xki ≥ 1 that was used the oriented triangle ijk. The
resulting collection of oriented triangles is represented in Figure 1b. Now the crucial
observation is that our cutting plane proof produces a triangulation of a surface, namely,
the projective plane.
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Figure 2. A representation of the projective plane (left) and the Klein
bottle (right).
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Figure 3. The support graph of a new facet-defining inequality and the
corresponding triangulation of the Klein bottle.

Example 2. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C} and K = {12, 23, 2B, 34, 41, 45, 56,
58, 67, 74, 78, 83, 89, 96, 9A,A5, AB,BC,C1, C9} (see Figure 3a). The inequality

∑

ij∈K

2xij ≥ 8

can be proved to be valid by a cutting plane proof similar to that used in Example 1.
This time, we sum Inequality (1) for ij ∈ {23, 2B, 41, 56, 78, 74, 83, 96, A5, AB,C1, C9}
and Inequality (2) for ijk ∈ {124, 234, 345, 358, 456, 467, 679, 789, 58A, 89A, 9AB, 9BC,
2BC, 12C}, and substract Equation (3) for ij ∈ {24, 35, 46, 79, 8A, 9B, 2C}. If we use
the same convention as above to represent the derivation, a triangulation is revealed (see
Figure 3b). This time the corresponding surface is the Klein bottle. It is an interesting
exercise to show that the inequality above — which was unknown before — defines a
facet of the linear ordering polytope (see the beginning of the proof of Proposition 14
for a hint).

In this article, we consider {0, 1
2
}-cuts derived from the system (1)–(3). Our motiva-

tion for studying these cuts is threefold. First, the cuts generalize known facet-defining
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inequalities, including Möbius ladder inequalities, although they are not guaranteed
to be facet-defining in general. This observation raises the possibility to find a gen-
eralization of the Möbius ladder inequalities whose corresponding separation problem
is still tractable. Second, they possess interesting structural properties. For instance,
some of them naturally define surfaces. It turns out that the topological properties of
these surfaces and the polyhedral properties of the corresponding cuts are related. To
our knowledge, this is the first connection of this type observed between topology and
polyhedral combinatorics. Third, it is interesting to find new facet-defining inequalities
which simultaneously have complex structures and short validity proofs. Since they
have short cutting-plane proofs, {0, 1

2
}-cuts are good candidates.

In Section 2, we define {0, 1
2
}-cuts and then note some basic results on the {0, 1

2
}-cuts

obtained from (1)–(3). In Section 3, we give some background on simplicial complexes
and surfaces. We begin Section 4 by relating {0, 1

2
}-cuts for the linear ordering problem

to certain pure 2-dimensional simplicial complexes. The rest of the section focusses on
surface-shaped {0, 1

2
}-cuts, i.e., cuts whose corresponding complex is a triangulation of

some surface. We establish two necessary conditions for such a {0, 1
2
}-cut to define a

facet of the linear ordering polytope. We then use these necessary conditions to prove
that no {0, 1

2
}-cut engendered by an orientable surface is facet-defining. Finally, in

Section 5, we show how to transform any factor-critical graph into a facet-defining {0, 1
2
}-

cut which is nearly surface-shaped. As a corollary, we prove that for every nonorientable
surface, there is a facet-defining cut with the same ‘shape’.

2. {0, 1
2
}-cuts

In this section, we formally define {0, 1
2
}-cuts. We then gather some initial results on

the {0, 1
2
}-cuts for the linear ordering problem arising from its standard linear relaxation

(1)–(3). More specifically, we give a system of linear equations on F2 = GF (2) describing
all cuts for a certain value of n.

2.1. {0, 1
2
}-cuts in general. Consider a system Ax ≥ b of linear inequalities with A ∈

Z
p×q and b ∈ Z

p, let P be the polyhedron defined by Ax ≥ b, and let PI = conv(P ∩Z
q)

denote the integer hull of P . A {0, 1
2
}-cut [3] for Ax ≥ b is an inequality of the form

(7) uT Ax ≥ uT b + 1

where u ∈ {0, 1}p, each component of uT A is even and uT b is odd. Every {0, 1
2
}-cut is

valid for PI . This definition of {0, 1
2
}-cut is slightly nonstandard. In the usual definition,

u belongs to {0, 1
2
}p and the resulting inequality is 1

2
times Inequality (7).

Perhaps because they rely on a simple, widely applicable principle, {0, 1
2
}-cuts are

very common in combinatorial optimization, see, e.g., [3, 4]. For recent progress on
{0, 1

2
}-cuts and their separation, see [17, 16]. A multiplier is any 0/1-vector u ∈ {0, 1}p

such that uT A ≡ 0T (mod 2) and uT b ≡ 1 (mod 2), where 0 denotes a zero column
vector of compatible size. We denote by M(A, b) the set of all multipliers of Ax ≥ b.
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This set forms an affine subspace of the affine space F
p
2 = GF (2)p = AG(p, 2) that we

call the multiplier space of Ax ≥ b.

2.2. {0, 1
2
}-cuts for the linear ordering problem. Henceforth, Ax ≥ b denotes the

system formed by Inequalities (1), (2) and

(8) −xij − xji ≥ −1 ∀{i, j} ⊆ X.

We could equally well replace Equations (3) by pairs of inequalities, but this would
make no essential difference in our discussion. We index the inequalities of Ax ≥ b as
follows. Let Y = X∪{∞}, where ∞ is any element not in X. The first (n+1)n(n−1)/3
inequalities are indexed by the tricycles on Y , i.e., the triples of distinct elements of Y
taken up to cyclic rotations of their coordinates. In the introduction, we have been using
‘oriented triangle’ to mean ‘tricycle’. The tricycle corresponding to (i, j, k) is denoted
by ijk. So ijk, jki and kij denote the same tricycle. In our indexing scheme, inequality
xij ≥ 0 corresponds to tricycle ∞ij and inequality xij + xjk + xki ≥ 1 to tricycle ijk.
The last n(n− 1)/2 inequalities are indexed by the unordered pairs of distinct elements
in X. Inequality −xij − xji ≥ −1 corresponds to unordered pair {i, j}. Thus we write
any multiplier as u =

(

v

w

)

for some vector v with (n + 1)n(n − 1)/3 components and
some vector w with n(n − 1)/2 components. Our first result describes the structure of
the multiplier space M(A, b). For convenience, we let M = M(A, b) for the rest of the
text. Below, ≤ denotes any linear order on Y whose largest element is ∞.

Proposition 1. The multiplier space M is defined by the following equations on F2:

w{i,j} =
∑

k∈Y
k 6=i,j

vijk ∀i, j in X with i < j;(9)

∑

k∈Y
k 6=i,j

vijk +
∑

k∈Y
k 6=i,j

vjik = 0 ∀i, j in Y with i < j;(10)

∑

i,j,k∈Y
i<j<k

vijk = 1.(11)

Proof. Let u be a multiplier and let i, j be two distinct elements of X. Then we have

(uT A)T
ij =

∑

k∈Y
k 6=i,j

vijk − w{i,j} ≡ 0 (mod 2) and (uT A)T
ji =

∑

k∈Y
k 6=i,j

vjik − w{i,j} ≡ 0 (mod 2).

Consequently Equations (9) hold, as do Equations (10), except perhaps for j = ∞.
Consider the multigraph with vertex set Y \ {i} in which two vertices j and k are
connected by one edge if either vijk = 1 or vjik = 1 but not both, and by two parallel
edges if vijk = vjik = 1. The degree of vertex j in this graph is given by the left hand
side of (10). So all the vertices of the multigraph except perhaps ∞ have even degree.
Because every multigraph has an even number of vertices of odd degree, the degree of
∞ is even, so Equations (10) hold for all i, j in Y .
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Because u is a multiplier, it also has to satisfy the condition uT b ≡ 1 (mod 2). This
condition can be rewritten as follows in F2:

∑

i,j,k∈X
i<j<k

vijk +
∑

i,j,k∈X
i<j<k

vkji +
∑

i,j∈X
i<j

w{i,j} = 1

⇐⇒
∑

i,j,k∈X
i<j<k

vijk +
∑

i,j,k∈X
i<j<k

vkji +
∑

i,j∈X
i<j

∑

k∈Y
k 6=i,j

vijk = 1

⇐⇒
∑

i,j,k∈X
i<j<k

vijk +
∑

i,j,k∈X
i<j<k

vkji +
∑

i,j,k∈X
i<j<k

vkji +
∑

i,j∈X
i<j

vij∞ = 1

⇐⇒
∑

i,j,k∈Y
i<j<k

vijk = 1.

�

Consider a multiplier u =
(

v

w

)

in M . By Proposition 1, u is entirely determined by v.
In other words, it suffices to specify the set of tricycles ijk for which vijk = 1 holds in
order to determine a multiplier. This set of tricycles has to satisfy the two conditions
given by Equations (10) and (11). In particular, it follows from (10) that each unordered
pair {i, j} ⊆ Y has to be contained in an even number of tricycles of the set. As will
be shown later, restricting this number of tricycles to be equal to 0 or 2 already gives
rise to a host of interesting inequalities.

The next corollary is a simple application of Proposition 1. Although it is not of
much use here, we state it because it spawns intriguing questions (see Section 6).

Corollary 2. The dimension and the cardinality of the multiplier space are respectively
given by

dim M = 2

(

n + 1

3

)

−

(

n

2

)

− 1 and |M | = 2dim M .

Proof. It suffices to show that the matrix of System (10)–(11) has rank
(

n

2

)

+ 1. If we
order the variables vijk in such a way that whenever i < j < k, vijk has position ` if and
only vkji has position ` +

(

n+1
3

)

, then the matrix of System (10)–(11) takes the form

N =

(

B B
1T 0T

)

,

where the columns of B are the characteristic vectors of the triangles of the complete
graph Kn+1 on Y . So the columns of B span the cycle space of Kn+1, hence B has rank
(

n+1
2

)

− (n + 1) + 1 =
(

n

2

)

[6]. So N has rank
(

n

2

)

+ 1, as claimed. �
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3. Simplicial complexes and surfaces

In the preceding section, we proved that {0, 1
2
}-cuts for the linear ordering problem

correspond to sets of tricycles (or oriented triangles) on Y = X∪{∞} satisfying certain
conditions. This section provides some basic notions and results from topology which
will help recognizing facet-defining cuts on the basis of their global structure.

3.1. Simplicial complexes. An (abstract) simplical complex with vertex set V is a
collection K of subsets of V such that (i) F ∈ K and G ⊆ F imply G ∈ K; (ii) v ∈ V
implies {v} ∈ K. We will always assume that V is finite. A set in K is called a face,
and a k-face if its cardinality is k + 1. The dimension of a k-face is k. The dimension
of K is the maximum dimension of any of its faces. Note that 1-dimensional simplicial
complexes correspond to simple graphs. A simplicial complex is said to be pure if all
its inclusionwise maximal faces have the same dimension. Let v be a vertex of K. The
link of v is the simplicial complex link(v,K) = {F − v : v ∈ F ∈ K}. Every simplicial
complex K with vertex set V can be canonically realized as a topological space, for
instance, as a subspace of R

2d+1, where d denotes the dimension of K [20]. Consider
any topological space S. If the canonical realization of K is homeomorphic to S, then
K is referred to as a triangulation of S.

3.2. Surfaces: definition, invariants and classification. A combinatorial surface
is a pure 2-dimensional simplicial complex such that the link of every vertex, regarded
as a simple graph, is a cycle. In particular, in a combinatorial surface, every 1-face is
contained in precisely two 2-faces. A surface is a connected compact Hausdorff topolog-
ical space locally homeomorphic to R

2. Every surface has a triangulation, see, e.g., [21]
for a short proof. Moreover any triangulation of a surface is a combinatorial surface.

Let S be a surface and K be any triangulation of S. The Euler characteristic of
triangulation K is defined by

(12) χ(K) = f0 − f1 + f2

where fk denotes the number of k-faces of K for 0 ≤ k ≤ 2. If K′ is another triangulation
of S, then we have χ(K) = χ(K′) [1]. So we can define the Euler characteristic of surface
S by letting χ(S) = χ(K). The second main invariant of surfaces is orientability. An
oriented 1-face is simply an arc, that is an ordered pair of distinct elements. Arcs uv
and vu are said to be opposite. An oriented 2-face or oriented triangle is a tricycle, that
is, an ordered triple of distinct elements taken up to cyclic rotations of its coordinates.
There are two tricycles on 3 points, namely, uvw = vwu = wuv and its opposite
wvu = vuw = uwv. Tricycle uvw determines three arcs: uv, vw and wu. Two tricycles
are said to be adjacent if they have exactly two elements in common. Two adjacent
tricycles are said to be compatibly oriented if the arcs they determine on their common
elements are opposite. For instance, uvw and wvu′ are adjacent and compatibly oriented
provided that u 6= u′. Otherwise they are opposite. An orientation of K is a collection
~K of tricycles such that for each 2-face F = {u, v, w} in K, we have either uvw ∈ ~K or



{0,

1

2
}-CUTS AND THE LINEAR ORDERING PROBLEM 9

wvu ∈ ~K. (This definition also applies in case K is any pure 2-dimensional simplicial

complex.) We say that ~K is coherent if all pairs of adjacent tricycles in ~K are compatibly
oriented. Triangulation K is said to be orientable if it has a coherent orientation. Two
cases are possible for S: either all its triangulations are orientable, in which case S
is orientable, or none of its triangulations is coherently orientable, in which case S is
nonorientable [1].

Let Sh denote the surface obtained from the sphere by adding h ≥ 0 handles, and let
Nb denote the surface obtained from the sphere by removing b > 0 discs and replacing
them by Möbius bands. All these surfaces are well-defined, up to homeomorphism.
The surfaces S1, N1 and N2 are known as the torus, projective plane and Klein bottle,
respectively.

Theorem 3 (The Classification of Surfaces [1, 21]). Let S be a surface with Euler
characteristic χ. If S is orientable, then it is homeomorphic to Sh for h = 1− 1

2
χ. If S

is nonorientable, then it is homeomorphic to Nb for b = 2 − χ. No two of the surfaces
S0, S1, N1, S2, N2, . . . are homeomorphic. �

4. Surface-shaped cuts

In this section, we use the terminology introduced in the preceding section to moti-
vate, define and study surface-shaped cuts. Central in our discussion is the question
of characterizing the surface-shaped cuts which are facet-defining. Two main necessary
conditions are given. Each of these is proved by reinterpreting surface-shaped cuts from
a different standpoint. An important implication of the necessary conditions is that no
orientable surface can engender a facet-defining cut.

4.1. Regarding cuts as oriented simplicial complexes. Let Ax ≥ b be defined as
in Subsection 2.2. Consider a multiplier u =

(

v

w

)

in M(A, b). Let ~K = ~K(u) denote
the set of tricycles ijk on Y = X ∪ {∞} such that vijk = 1. As was noted above, u is

entirely determined by ~K.

Lemma 4. If ~K = ~K(u) contains a tricycle and its opposite, then the cut defined by the
multiplier u is implied by (1)–(3).

Proof. Without loss of generality, we assume that ~K contains both ijk and kji, where i,
j and k are three distinct elements of X. Inequality (7) is clearly implied by (1)–(3) and
ūT A ≥ ūT b+1, where ū is the vector obtained from u by replacing all its coordinates by
zeroes except the ones corresponding to ijk and kji. Since the latter inequality reads

(xij + xjk + xki) + (xkj + xji + xik) ≥ 3 ⇐⇒ (xij + xji) + (xjk + xkj) + (xki + xik) ≥ 3,

it is implied by (3). The lemma follows. �

If ~K does not contain a pair of opposite tricycles, then we say that u is simple. From
now on, we will restrict ourselves to simple multipliers. When u is simple, its corre-
sponding set of tricycles ~K can be regarded as an orientation of the pure 2-dimensional
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simplicial complex K = K(u) whose inclusionwise maximal faces are the sets {i, j, k}

with vijk = 1 or vkji = 1. Because u is a multiplier, ~K satisfies certain conditions.
For instance, Equation (10) requires that for each 1-simplex {i, j} in K the number of

oriented 2-simplices of the form ijk in ~K and the number of oriented 2-simplices of the
form jik in ~K have the same parity. In particular, it follows that in K each 1-simplex is
contained in an even number of 2-simplices. If moreover K is a combinatorial surface,
then we call multiplier u and the corresponding cut surface-shaped.

Conversely, we can start with any combinatorial surface K whose vertex set is included
in Y and define a multiplier u such that K(u) = K, as follows. Consider any orientation
~K of K. Let u =

(

v

w

)

denote the 0/1-vector with v determined by vijk = 1 if ijk ∈ ~K,
vijk = 0 otherwise, and w determined by Equation (9). Then either u is a multiplier

or replacing an odd number of tricycles in ~K by their opposite yields a 0/1-vector u

which is a multiplier. By construction, we have ~K(u) = ~K and K(u) = K. Note that
the multipliers obtained in this way are always simple.

4.2. The case of Möbius ladder inequalities. A digraph D = (N,A) is a Möbius
ladder if there is a positive integer k and dicycles1 C0, C1, . . . , Ck−1 in D such that
A = C0 ∪ C1 ∪ · · · ∪ Ck−1 and the following conditions are satisfied for all i, j:

(M1) k ≥ 3 and k is odd;
(M2) Ci ∩ Ci+1 contains exactly one arc, denoted by ei;
(M3) Ci ∩ Cj = ∅ if j /∈ {i − 1, i, i + 1};
(M4) |Ci| ∈ {3, 4};
(M5) the total degree of each node in D is greater or equal to 3;
(M6) if Ci and Cj have a node v in common and i 6= j, then either Ci, Ci+1, . . . , Cj−1,

Cj have node v in common, or Cj, Cj+1, . . . , Ci−1,Ci have node v in common,
but not both;

(M7) D − {ei+1, ei+3, . . . , ei−2} contains exactly one dicycle, namely, Ci.

The above definition is due to Reinelt [24]. It is perhaps not very intuitive. Notably,
(M1)–(M7) imply that A − {e0, . . . , ek−1} is a semicycle, that is, a set of arcs obtained
by reversing certain arcs of a dicycle of length at least three. Whenever N ⊆ X, the
Möbius ladder D = (N,A) has a corresponding Möbius ladder inequality which reads

(13)
∑

ij∈A

xij ≥
k + 1

2
.

Every Möbius ladder inequality defines a facet of the linear ordering polytope [24] and
can be derived as a {0, 1

2
}-cut from (1)–(3) as in Example 1. The resulting collections of

tricycles yield triangulations of the projective plane (see Figure 4 for a further example).
In other words, the following result holds.

1Throughout this article, dicycles are regarded as sets of arcs.
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Proposition 5. Every Möbius ladder inequality is a surface-shaped {0, 1
2
}-cut whose

underlying surface is the projective plane N1. �

a.

1

2

1

2

∞

∞

1

2

1

2

b.

Figure 4. A Möbius ladder and a corresponding triangulation of N1.

4.3. Interpreting the cuts using complete cyclic orders. Let u be a surface-
shaped multiplier, let K = K(u) and ~K = ~K(u). Consider the graph G = G(u) which
has one vertex per 2-face of K and in which two 2-faces form an edge if the corresponding
tricycles in ~K are adjacent and compatibly oriented. Each connected component of G
determines a subcomplex of K, which is referred to as a zone of u. The zone graph of u
has one vertex per zone and one edge per pair of zones containing a common 1-simplex,
and is denoted by Z(u). The aim of this subsection is to prove the following lemma.
Quite naturally, we call a multiplier facet-defining if the corresponding {0, 1

2
}-cut defines

a facet of the linear ordering polytope.

Lemma 6. Let u be a facet-defining surface-shaped multiplier. Then every zone of u is
a triangulated cycle.

The meaning of ‘triangulated cycle’ should be clear. If not, a formal definition is given
below. Triangulated cycles are the simplicial complexes which are recursively defined as
follows. The simplicial complex {∅, {i0}, {i1}, {i2}, {i0, i1}, {i0, i2}, {i1, i2}, {i0, i1, i2}} is
a triangulated cycle with vertex sequence i0i1i2i0. If a simplicial complex L is a triangu-
lated cycle with vertex sequence i0i1 · · · im−1i0, then for each α ∈ {0, . . . ,m−1} and all j
not in the vertex set of L, the simplicial complex L∪{{j}, {iα, j}, {j, iα+1}, {iα, j, iα+1}}
is a triangulated cycle with vertex sequence i0i1 · · · iαjiα+1 · · · im−1i0 (indices are taken
modulo m).

Note that Lemma 6 in particular implies that every facet-defining surface-shaped
multiplier has at least two zones. This is due to the fact that a triangulated cycle is
not a combinatorial surface because it has a boundary. The technique we use to prove
Lemma 6 generalizes that used in the proof of Lemma 4. Namely, if the cut defined
by a multiplier u is facet-defining, then replacing one or several nonzero coordinates of
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u by zeroes should cause Inequality (7) to loose its validity. In order to formalize this
idea in the most informative way, we resort to complete cyclic orders.

A set C of tricycles is said to be asymmetric if ijk ∈ C implies kji /∈ C, transitive if
ijk, ik` ∈ C and j 6= ` imply ij` ∈ C, a cyclic order if it is asymmetric and transitive,
and complete if ijk /∈ C implies kji ∈ C. Complete cyclic orders are combinatorial
structures encoding the relative positions of distinct points on a oriented closed curve.
Given a set of distinct points on such a curve, we obtain a complete cyclic order by
setting ijk ∈ C whenever j lies in the open path which goes from i to k in the prescribed
orientation. A set of tricycles is said to be extendable if it is contained in some complete
cyclic order. Determining whether a set of tricycles is extendable or not is a NP-complete
problem [10]. We call a set of tricycles minimally nonextendable if it is nonextendable
and each of its proper subsets is extendable.

The complete cyclic order polytope, denoted by P Y
CCO, is the convex hull of the 0/1

characteristic vectors of all complete cyclic order orders on Y = X ∪ {∞} in the real
vector space which has one coordinate yijk per tricycle ijk on Y . The polytopes PX

LO

and P Y
CCO are affinely equivalent, the equivalence being given by

(14) x 7→ y with yijk =

{

xij + xjk + xki − 1 if i, j, k 6= ∞,
xij if k = ∞.

A set C of tricycles on Y is nonextendable if and only if its dual Cd = {kji : ijk ∈ C}
is nonextendable, that is, if and only if the nonextendable set of tricycles (NEST )
inequality,

(15)
∑

ijk∈C

yijk ≥ 1

is valid for the complete cyclic order polytope. Indeed, the inequality is valid if and only
if every vertex of the polytope has yijk = 1 for some ijk ∈ C. Since all vertices of P Y

CCO

satisfy yijk + ykji = 1, the latter condition holds if and only if Cd is nonextendable or,
equivalently, if and only if C is nonextendable. NEST inequalities were introduced by
the author in [8]. Note that Inequality (15) is valid for P Y

CCO if and only if the inequality

(16)
∑

ij∞∈C

xij +
∑

ijk∈C
i,j,k 6=∞

(xij + xjk + xki) ≥ |{ijk ∈ C : i, j, k 6= ∞}| + 1

obtained from it by expressing the y variables in terms of the x variables using (14)
is valid for PX

LO. We also refer to Inequality (16) as a nonextendable set of tricycles
(NEST ) inequality. Now the key observation is that, modulo Equations (3), the cut

determined by a multiplier u is exactly the NEST inequality (16) with C = ~K(u). Hence,
~K(u) has to be minimally nonextendable whenever Inequality (7) is facet-defining.

Proof of Lemma 6. Let K = K(u), ~K = ~K(u), and G = G(u). Consider any inclu-
sionwise maximal subset U of V (G) such that G[U ] is connected and U determines a
subcomplex L of K which is a triangulated cycle. Let i0i1 · · · im−1i0 denote the vertex
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sequence of L, and let ~L denote the orientation of L determined by u. If U is a con-
nected component of G, then there is nothing to prove. Otherwise, there is an index
α ∈ {0, . . . ,m − 1} and a vertex j of K such that the 2-face {iα, j, iα+1} belongs to K
but not to U and is adjacent to some element of U in G. By maximality of U , vertex
j has to belong to L. It follows that ~L is nonextendable, hence ~K is not minimally
nonextendable, a contradiction. �

4.4. Interpreting the cuts in terms of matching theory. As in the preceding
subsection, we reconsider surface-shaped cuts from a different angle. Again, this yields
a necessary condition for a cut to be facet-defining. An important consequence is that
no orientable surface can give rise to a facet-defining cut. We begin with some classic
definitions and results from matching theory.

Let G = (V,E) be a graph. A matching is a set of pairwise independent edges.
When a matching covers every vertex, it is said to be perfect. An edge cover is a set of
edges covering every vertex. The maximum cardinality of a matching and the minimum
cardinality of an edge cover are respectively denoted by ν(G) and ρ(G). Whenever G
has no isolated vertex, we have ν(G) + ρ(G) = |V |. If G− v has a perfect matching for
all vertices v, then G is called factor-critical. A set of vertices S is said to be matchable
to G − S if the graph with vertex set S ∪ C(G − S) and edge set {{s, C} : ∃c ∈ C
s.t. sc ∈ E(G)} contains a matching covering S, where C(G− S) denotes the collection
of all connected components of G − S. We will use the following structural result on
matchings [6].

Theorem 7. Every graph G contains a set of vertices S with the following two proper-
ties: (i) S is matchable to G − S; (ii) every component of G − S is factor-critical. �

The link between surface-shaped {0, 1
2
}-cuts and matching theory relies on the concept

of a 2-packing, i.e., a collection of dicycles on some finite set such that each arc is
contained in at most two dicycles of the collection. Whenever C is a 2-packing with an
odd number of dicycles whose ground set is included in X, the 2-packing inequality

(17)
∑

ij∈∪C

2xij ≥ |C| + 1

is valid for the linear ordering polytope. By Lemma 6, if a surface-shaped multiplier u is
facet-defining, then each zone of u determines a dicycle on Y = X ∪{∞}. Let C denote
the collection of all those dicycles which do not contain ∞. Then C is a 2-packing and
it is easy to check that Inequalities (7) and (17) coincide. For i ∈ Y , let Z ′

i(u) denote
the subgraph of the zone graph of u induced by the zones which do not contain i. It
emerges from our discussion that Z ′

∞(u) plays a special role. We call it the restricted
zone graph of u. We are now ready to state and prove our second necessary condition
for a surface-shaped cut to define a facet of the linear ordering polytope.

Lemma 8. Let u be a facet-defining surface-shaped multiplier. Then the following hold:

(i) the restricted zone graph Z ′
∞(u) is factor-critical;
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(ii) the graph Z ′
i(u) is factor-critical for all i ∈ Y ;

(iii) the zone graph Z(u) is factor-critical.

Proof. We claim that it suffices to prove (i). Indeed, as we can exchange the roles of
any element of X and ∞ by a symmetry of the linear ordering polytope [7], (ii) follows
from (i). Moreover, we can assume that ∞ is not a vertex of K(u) by adding one new
element to X and then exchanging the roles of this new element and ∞ by a symmetry
of the polytope. In virtue of the trivial lifting lemma [24], the resulting surface-shaped
multiplier is still facet-defining. Hence (iii) also follows from (i).

We now prove (i). Again, let C denote the collection of dicycles on Y defined by the
zones of u which do not contain ∞. By contradiction, suppose that the restricted zone
graph of u is not factor-critical. Then, by Theorem 7, there is a partition of C into
nonempty subsets S, C1, . . . , Cm such that |Cα| is odd for 1 ≤ α ≤ m and no dicycle
of Cα has an arc in common with any dicycle of Cβ if α 6= β. This is easily seen by
considering the graph which has one vertex per dicycle of C, two vertices being adjacent
when the corresponding dicycles share an arc. The parity condition on the cardinality
of Cα for 1 ≤ α ≤ m is due to the (trivial) fact that factor-critical graphs have an
odd number of vertices. Note that by assertion (i) of Theorem 7, we have m ≥ |S|.
Moreover, note that in Inequality (7), uT b exactly counts the number of dicycles in C,
so |C| = uT b is odd. It follows that we have m ≥ |S|+1 ≥ 2. By summing the 2-packing
inequalities corresponding to C1, . . . , Cm and perhaps some trivial inequalities of the
form xij ≥ 0, we obtain the inequality

∑

ij∈∪C

2xij ≥
m

∑

α=1

|Cα| + m = |C| − |S| + m.

Because the right-hand side of the latter inequality is at least |C| + 1, it follows that
the {0, 1

2
}-cut determined by u, which coincides with Inequality (17), is implied by the

2-packing inequalities of C1, . . . , Cm and the trivial inequalities, a contradiction. In
conclusion, the restricted zone graph of u has to be factor-critical. �

We can now prove the consequential result which was announced in the beginning of
this subsection.

Theorem 9. Let u be a surface-shaped multiplier. If its associated complex is orientable
then u is not facet-defining.

Proof. Suppose otherwise. The zone graph of u has to be factor-critical by Lemma 8,
and bipartite because K(u) is orientable. Hence the zone graph of u is a one-vertex
graph, so u has only one zone. This contradicts Lemma 6. �

5. Facet-defining cuts for nonorientable surfaces

In the preceding section, we gave conditions that all facet-defining surface-shaped cuts
have to satisfy. In particular, we showed that the underlying surface of any such cut
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is nonorientable. It is then natural to ask which nonorientable surfaces admit a facet-
defining cut. As we show in this section, all of them do. For each nonorientable surface,
we will construct a surface-shaped facet-defining cut whose corresponding surface is
the given surface. Before diving into the details, we give the intuition behind the
construction. The idea is to prove a partial converse to Lemma 8(i). We fix a nontrivial
factor-critical graph and try to find a facet-defining multiplier whose restricted zone
graph is the given graph. We show that this can be done if we first modify the given
graph by substituting a path of length 3 for each edge. Despite this restriction, and
despite the fact not all obtained multipliers are surface-shaped, our constructive results
allow us to easily build facet-defining surface-shaped cuts of any (nonorientable) ‘shape’.

5.1. Prescribing the restricted zone graph. Let G be any graph. Later on, we will
assume that G is a nontrivial factor-critical graph but for the moment we just assume
that G has minimum degree at least 2 and an odd number of vertices. A digraph D
without isolated nodes is a representation of G if it has a collection C = {Cv : v ∈ V (G)}
of dicycles satisfying the following properties for all vertices v and w of G:

(R1) the length of Cv equals 2 deg(v);
(R2) every arc of D is either contained in one dicycle of C (simple arc) or in two dicycles

of C (double arc);
(R3) if v and w are nonadjacent then Cv and Cw are node-disjoint, and if v and w are

adjacent then Cv and Cw have two nodes and one arc in common;

DG

1

2

3

5

4

C3

C2

C1

C4

C5

Figure 5. A graph G and a representation D of graph G.

As is easily verified, every graph without pending or isolated vertices has at least
one representation. We now state some key properties of representations following from
(R1)–(R3). Let D be any representation of G and let C = {Cv : v ∈ V (G)} denote the
corresponding collection of dicycles. By (R3), each edge {v, w} of G uniquely determines
a double arc in D, namely, the arc shared by Cv and Cw. Vice versa, (R2) and (R3)
together imply that every double arc in D uniquely determines an edge in G. Since the
dicycle Cv contains one double arc per neighbor of v in G, the respective positions of
these double arcs in Cv determine a complete cyclic order on the neighborhood of each
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vertex v of G (and also on the edges of G incident to v). In fact, these complete cyclic
orders determine the representation up to isomorphism. It follows from (R3) that in
each dicycle of C simple and double arcs alternate. Therefore, every vertex of D has
either indegree one and outdegree two or indegree two and outdegree one. Each arc
of D contains one vertex of each type, so D is bipartite. Moreover, in every dipath or
dicycle of D simple and double arcs alternate.

Condition (R2) obviously implies that the collection C of dicycles associated to the
representation D is a 2-packing. By triangulating arbitrarily each dicycle of C (without
new vertices), we obtain a certain set of tricycles. We then add to this set of tricycles

the tricycle ∞ij for each simple arc ij of D. Let ~K denote the resulting set of tricycles,
and let u =

(

v

w

)

denote the 0/1-vector with v determined by vijk = 1 if ijk ∈ ~K and
vijk = 0 otherwise, and w determined by Equation (9).

Lemma 10. Let G, D, C and u be defined as above, and let K = K(u). Then the
following hold:

(i) u is a multiplier;
(ii) the restricted zone graph of u is precisely G;
(iii) the cut determined by u coincides with the 2-packing inequality of C,
(iv) the link of every vertex in K is a cycle, except perhaps that of ∞;
(v) the Euler characteristic of K is |V (G)| − |E(G)| + 1.

Proof. 2 As is easily verified, the zones of u not containing ∞ are in one-to-one corre-
spondence with the dicycles of C. Moreover, two zones have a common 1-face if and only
if the corresponding dicycles share a double arc in D. Assertion (ii) follows. Now let
Ax ≥ b denote the system defined in Subsection 2.2. Equations (9) hold by definition
of u. Since in K every 1-face is contained in exactly two 2-faces, Equations (10) hold.
Finally, Equation (11) holds because uT b counts the number of zones of u, which is an
odd number (recall that we assume that G has an odd number of vertices). Assertion
(i) thus follows from Proposition 1. We already observed that (iii) holds in Subsection
4.4.

We now turn to (iv). Let v be a vertex of K distinct from ∞. Then v is contained
in exactly two zones of u not containing ∞, say P and Q. These two zones intersect
in a common 1-face. Let i0i1 · · · ip−1i0 and j0j1 · · · jq−1j0 respectively denote the vertex
sequences of P and Q, with i0 = j0 = v and i1 = j1. Vertex v is contained in exactly
two 2-faces of K through ∞, namely, {i0, ip−1,∞} = {v, ip−1,∞} and {j0, jq−1,∞} =
{v, jq−1,∞}. Now we see that the link of v in K is some i1–ip−1 path in P followed
by the path with vertex sequence ip−1∞jq−1 followed by some jq−1–j1 path in Q (see
Figure 6). Hence link(v,K) is a cycle and (iv) holds.

2At several places in this proof we implicitely use properties of representations stated above. The
reader is encouraged to form a mental image of what a representation looks like before reading on.
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v
i1 = j1

j3 . . .

j2
jq−1

∞

ip−1

. . .

i4 i5

i3

i2

Figure 6. A view of K around vertex v 6= ∞.

Finally, in order to prove (v), we compute the number of 0-faces (vertices), 1-faces
and 2-faces of K as follows:

f0 = 1 +
∑

v∈V (G)

deg v = 1 + 2|E(G)|

f1 =
∑

v∈V (G)

(

9

2
deg v − 3

)

= 9|E(G)| − 3|V (G)|

f2 =
∑

v∈V (G)

(3 deg v − 2) = 6|E(G)| − 2|V (G)|.

Therefore, we have χ(K) = |V (G)| − |E(G)| + 1 and (v) holds. �

Note that link(∞,K) is not always a cycle. For instance, if we start with the repre-
sentation depicted in Figure 5, the link of ∞ in K is the disjoint union of two cycles.

5.2. Turning factor-critical graphs into facets. In this subsection we show that
the multipliers u we have constructed in the preceding subsection are facet-defining
provided that G is obtained from a nontrivial factor-critical graph G0 by replacing each
edge by a path of length 3, and that the representation we choose for G renders no
vertex ‘extra-bad’.

Let G be a nontrivial factor-critical graph, let D be a representation of G and let
C = {Cv : v ∈ V (G)} denote the corresponding collection of dicycles of D. We begin by
noting further useful properties of representations. Consider a s–t dipath P in D. Then
P determines a subgraph H = H(P ) of G. The edges of H are those which correspond
to double arcs in P and the vertices of H are the endpoints of these edges. We say that a
vertex v of H is primary if P contains a simple arc of Cv and secondary otherwise. If H
has at most one primary vertex then P ⊆ Cv for some v. Otherwise there is a sequence
of vertices an edges v0e0v1e1 . . . em−1vm in H such that vα is primary for all α ≤ m,
v0 and vm are respectively the first and last primary vertices of H, eα = {vα, vα+1} for
all α < m, and eα 6= eβ for all distinct α and β less than m. Consequently, H always
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contains a v0–vm path on its primary vertices. The above definitions and observations
can be readily adapted to the case s = t, that is, when P is a dicycle in D.

Let now D be any digraph. A feedback arc set (or dicycle cover) of D is a set of
arcs F such that D − F is acyclic. The minimum cardinality of a feedback arc set of
D is denoted by τ(D). The next lemma is a first step towards the main result of this
subsection, namely, Proposition 14.

Lemma 11. Let G0 be a nontrivial factor-critical graph, let G be the graph obtained
from G by replacing each edge by a path of length 3, let D be any representation of G
and let C = {Cv : v ∈ V (G)} denote the corresponding collection of dicycles of D. Then
G is a nontrivial factor-critical graph and we have

(18) τ(D) = ρ(G) = (|V (G)| + 1)/2 = (|C| + 1)/2.

Therefore, the face of the linear ordering polytope defined by the 2-packing inequality of
C is nonempty.

Proof. It is obvious that G is a nontrivial factor-critical graph. If we show that (18)
holds, then the face defined by the 2-packing inequality of C, Inequality (17), is neces-
sarily nonempty. This is due to the fact that the minimum value of the left hand side
of Inequality (17) for a point of the linear ordering polytope is 2τ(∪C) = 2τ(D). Note
that the second equality in (18) directly follows from the fact that G is factor-critical,
and that the third holds by the definition of a representation.

It remains to prove that we have τ(D) = ρ(G). Let F be a feedback arc set of D
containing only double arcs. Such a feedback arc set exists because if F contains some
simple arc, we can replace it with some double arc contained in the same dicycle of C.
Feedback arc set F determines a set of edges of G which necessarily covers all vertices
of G. So we have ρ(G) ≤ τ(D). In order to prove the converse inequality, consider any
minimum edge cover N of G. Then N determines a set of arcs F in D, namely, the set
of double arcs corresponding to the edges of N . We claim that F is a feedback arc set.
By contradiction, suppose that D − F has a dicycle C. Because N is an edge cover, F
hits all dicycles in C. Hence C is not a member of C. It follows that H(C) contains a
cycle. By construction of G, this cycle has to contain a vertex v with degG(v) = 2. In
particular, one of the two edges incident to v has to belong to N , so the corresponding
double arc belongs to F , but it also belongs to C, a contradiction. �

As above, let G be a nontrivial factor-critical graph. A vertex v of G is said to be
bad if we can partition δG(v) = {e ∈ E(G) : v ∈ e} in two nonempty subsets B and
R such that no minimum edge cover of G intersects B and R simultaneously. Now
consider some representation D of G. Then a vertex v is called extra-bad if it is bad
and, moreover, B and R are intervals in the complete cyclic order on δG(v) determined
by D (see the paragraph following the definition of representation in Subsection 5.1).
The following lemma characterizes factor-critical graphs with a bad vertex.



{0,

1

2
}-CUTS AND THE LINEAR ORDERING PROBLEM 19

Lemma 12. Let G be a factor-critical graph, let v be a vertex of G such that there is a
partition of δG(v) into two possibly empty subsets B and R such that in every minimum
edge cover of G the edges incident to v are either contained in B or contained in R.
Then G = GB ∪GR for some factor-critical graphs GB and GR having only vertex v in
common and such that δGB

(v) = B and δGR
(v) = R.

Before proving Lemma 12, we state the following theorem on ear decompositions of
factor-critical graphs [19]. It plays a central role in the proof of the lemma.

Theorem 13. Let G be a factor-critical graph. There is a sequence G1, . . . , Gr of graphs
such that G1 is the one-vertex graph, Gi is obtained from Gi−1 by gluing a single path
with an odd number of edges having only its endvertices v and w in common with Gi−1

(we allow the case v = w), and Gr = G. All graphs G1, . . . , Gr are factor-critical. �

Proof of Lemma 12. In the proof, we will refer to edges in B and R as blue and red
edges respectively. If a subgraph of G through v intersects both B and R then it will
be called bichromatic, otherwise it will be called monochromatic. We prove the lemma
by induction on the number r of ears in an ear decomposition of G, see Theorem 13.
The result holds trivially if r = 0. Now suppose that G can be obtained from some of
its factor critical subgraphs H by the addition of one ear P . If v is not a vertex of H
then the result holds. Assume now that v is a vertex of H. Note that H cannot have
a bichromatic minimum edge cover, because otherwise the same would be true for G.
By the induction hypothesis, H has two factor-critical subgraphs HB and HR such that
H = HB ∪ HR, HB and HR have only vertex v in common, δHB

(v) = B ∩ E(H) and
δHR

(v) = R ∩ E(H). Up to symmetry, we have to treat four cases.

Case 1. The endpoints of P are both equal to v. Ear P has to be monochromatic
because otherwise there would be a minimum edge cover of G that intersects both B
and R. If δP (v) ⊆ B then we let GB = HB ∪ P and GR = HR. Else δP (v) ⊆ R and we
let GB = HB and GR = HR ∪ P .

Case 2. One endpoint of P is v and the other in HB − v. In this case the edge of P
incident to v has to be blue because otherwise G would have a bichromatic minimum
edge cover. We take GB = HB ∪ P and GR = HR.

Case 3. Both endpoints of P are in HB − v. Then we simply let GB = HB ∪ P and
GR = HR.

Case 4. One endpoint of P is in HB −v and the other in HR−v. This case is impossible
because we can easily construct a bichromatic minimum edge cover of G. �

The next result is the main result of this subsection. It enables us, with the help
of Lemma 12, to transform any nontrivial factor-critical graph into a facet-defining
{0, 1

2
}-cut for the linear ordering polytope which is nearly surface-shaped.

Proposition 14. Let G0 be a nontrivial factor-critical graph, let G be the graph obtained
from G0 by replacing each edge by a path of length 3, let D be any representation of
G with vertex included in X, and let C = {Cv : v ∈ V (G)} denote the collection of
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dicycles associated to D. Then the 2-packing inequality of C is facet-defining for the
linear ordering polytope whenever G has no extra-bad vertex with respect to D.

Proof. By a standard technique for proving that certain inequalities define facets of the
linear ordering polytope, see Reinelt [24], it suffices to show the following claims:

(i) for each dicycle Cv in C there is a perfect matching of G − v and a corresponding
set of arcs in D whose removal kills all dicycles of D except Cv;

(ii) whenever s and t are nodes of D such that neither st nor ts is an arc of D, there
is a minimum feedback arc set which intersects every s–t dipath and every t–s
dipath.

It is fairly easy to prove Claim (i) by adapting the proof of Lemma 11. Indeed, let M
be a perfect matching of G − v and let F be the corresponding set of double arcs in
D. Then D − F cannot contain a dicycle other than Cv because otherwise there would
exist a cycle in G and a vertex w on this cycle with degG(w) = 2 which is not covered
by M and distinct from v, a contradiction.

We now prove Claim (ii). Let es = {vs, ws}, and et = {vt, wt} be the unique edges
of G such that s is incident to the double arc corresponding to es and t is incident to
the double arc corresponding to et. Because neither st nor ts is an arc of D, we have
es 6= et. Let d denote the minimum distance in G between an endvertex of es and an
endvertex of et.

Case 1. d ≥ 3. Let N be a minimum edge cover of G and let F be the corresponding
minimum feedback arc set of D. For every s–t dipath or t–s dipath P in D, the
corresponding subgraph H(P ) of G contains a path whose length is at least three.
Because of the way G was constructed, this path has an internal vertex v of degree 2 in
G. One of the two edges incident to v has to be included in N , so F intersects P .

Case 2. d = 2. There is a path in G from es to et that has length 2. Let z be the
intermediate vertex of this path. Any length 2 path from es to et must coincide with
the latter path because the girth of G is at least 9. Let N be a minimum edge cover of
G containing one of the two edges of the length 2 path from es to et, and let F denote
the corresponding minimum feedback arc set. Now it is not difficult to verify that F
intersects every s–t dipath and every t–s dipath.

Case 3. d = 1. Without loss of generality we can assume that vs and vt are adjacent.
Any other path from es to et has length at least 6 because G has girth at least 9. Let N
be any minimum edge cover of G containing {vs, vt} and let F denote the corresponding
minimum feedback arc set of D. Again, it is quite clear that F intersects every s–t dipath
and every t–s dipath.

Case 4. d = 0. Without loss of generality, we can assume that vs = vt. For convenience,
let us refer to the vertex vs = vt as vertex v. Then es and et determine two intervals in
complete the cyclic order at v, namely, the intervals determined by the double arcs on
sCvt and tCvs, respectively. Because G has no extra-bad vertex, v is not extra-bad and
there is a minimum edge cover N of G containing edges from both intervals. Let F be
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the minimum feedback arc set of D corresponding to N . Then F intersects every s–t
dipath and every t–s dipath in D. �

Avoiding extra-bad vertices in G is always possible. Indeed, if G has no cutvertex
then Lemma 12 implies that G has no bad vertices. Whenever a cutvertex v of G is
extra-bad, we can ‘repair’ it with the help of Lemma 12 by moving one of the blue
edges in the middle of the interval of red edges in the complete cyclic order on δG(v)
determined by the representation.

Assume now that G0 is any graph with minimum degree at least 2. Again, let G be
the graph obtained from G0 by substituting a path of length 3 for each edge. Then G
admits a representation D. Let C denote the associated 2-packing. Since it may be that
G has an even number of vertices, instead of considering the 2-packing inequality of C
we consider the valid inequality

(19)
∑

ij∈D

2xij ≥ 2τ(D) ⇐⇒
∑

ij∈D

xij ≥ τ(D).

Using essentially the same arguments as above, we can show that Inequality (19) is
facet-defining only if G (and hence G0) is factor-critical and has no extra-bad vertices.
In this case, (19) coincides with the 2-packing inequality of C.

5.3. Constructing a facet for each nonorientable surface. Let G0, G, D and C
be as in Proposition 14. By Lemma 12, representation D can always be chosen in
such a way that G has no extra-bad vertices. Then, by Proposition 14, the 2-packing
inequality of C is facet-defining. It follows from Lemma 10 that this inequality is a
{0, 1

2
}-cut. Furthermore, the same lemma implies that the corresponding multiplier u is

surface-shaped provided that the link of ∞ in K = K(u) is a cycle. A last consequence
of Lemma 10 is that we have χ(K) = 2 − r, where r = |E(G)| − |V (G)| + 1 denotes
the number of ears in any ear decomposition of G. Therefore, proving our final result
is just a matter of choosing G0 and D carefully enough.

b.

v1

v4 v5 v6 v7 v8

v9

v3v2

v1

v4 v5 v6 v7 v8

v9

v3v2

a.

Figure 7. The graphs G0 and G used in the proof of Theorem 15.

Theorem 15. Each nonorientable surface S has a triangulation K such that K = K(u)
for some facet-defining multiplier u.

Proof. Let b = 2 − χ(S). If b = 1, then S is homeomorphic to N1 and the theorem
follows from Proposition 5. Else, consider the graph G0 obtained from a odd cycle with
vertices v1, v2, . . . , v2b−1 by attaching b − 1 ears P1, . . . , Pb−1 of length 3 to the cycle,
with endpoints v1 and v2 for P1, and with both endpoints equal to v2α for Pα, α > 1.
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Note that G0 is factor-critical. An example for b = 5 is given in Figure 7a. Let G be
the graph obtained from G0 by replacing each edge by a path of length 3 (see Figure
7b). Now let D be a representation of G with the following properties. First, the node
set of D has to be included in X (this is obviously always possible if we assume that
n is large enough). Second, none of the vertices v4, v6, . . . , v2b−2 should be extra-bad.
There is essentially one way to achieve this (see Figure 8). By Lemma 12, if none of
the latter vertices is extra-bad then no vertex of G is extra-bad. Let u denote any
multiplier obtained from D as in Subsection 5.1 and let K = K(u). Our third and last
requirement on representation D is that the cyclic orderings on the neighborhoods of
v1 and v2 determined by the representation should be such that the link of ∞ in K is
a cycle. Once again, this can be done (see Figure 8). The theorem now follows from
Lemma 10 and Proposition 14. �

8
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1

2

4

3
4

56

5 6 8 7 9 A

A 9

2

1

7

Figure 8. A representation of the graph G in Figure 7.

6. Conclusion

We have studied {0, 1
2
}-Chvátal-Gomory cuts derived from the standard relaxation of

the linear ordering polytope. Certain of these cuts correspond to triangulated surfaces.
We have shown that a surface has a triangulation yielding a facet of the linear ordering
polytope if and only if it is nonorientable. Along the way, we have obtained a host
of new facets. Indeed, most facets produced by Proposition 14 were not known before.
Among the many questions raised by our findings, we note the three following questions.

(Q1) How to estimate the number of facet-defining {0, 1
2
}-cuts, as a function of n?

(Simulation is possible here.)
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(Q2) Let S be a nonorientable surface and K be a triangulation of S. Is there always
a facet-defining orientation of K? More generally, what are the facet-defining
orientations of K?

(Q3) Is there a polynomial time algorithm solving the separation problem for a super-
class of the facet-defining inequalities produced by Proposition 14?
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