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Abstract

Sewell and Trotter proved that every connected α-critical graph that is not isomorphic
to K1,K2 or an odd cycle contains a totally odd K4-subdivision. Their theorem implies an
interesting min-max relation for stable sets in graphs without totally odd K4-subdivisions.
In this note, we give a simpler proof of Sewell and Trotter’s theorem.

1 Introduction

Graphs considered in this note are finite, simple, and undirected. A graph G is α-critical
if α(G − e) > α(G) for every e ∈ E(G), where α(G) denotes the maximum cardinality of a
stable set in G. A subdivision of K4 is totally odd if each edge of K4 has been replaced with
an odd-length path.

Answering a question of Chvátal [1], Sewell and Trotter [5] proved the following theorem.

Theorem 1 ([5]). Every connected α-critical graph that is not isomorphic to K1,K2 or an
odd cycle contains a totally odd K4-subdivision.

As noted by Sewell and Trotter [6], their result implies an interesting min-max relation for
the cardinality of a stable set in graphs having no totally odd K4-subdivision as a subgraph.
For an arbitrary graph G, denote by ρ̃(G) the minimum cost of a family of vertices, edges
and odd cycles covering V (G), where the cost of a vertex or an edge is 1, the cost of an odd
cycle C is (|C| − 1)/2, and the cost of a family is the sum of the costs of its elements. Then
clearly α(G) ≤ ρ̃(G). Moreover, by Theorem 1 we have α(G) = ρ̃(G) when G has no totally
odd K4-subdivision. (Indeed, it is always possible to find an α-critical subgraph G′ ⊆ G
with α(G′) = α(G) by removing some edges of G, and by Sewell and Trotter’s theorem every
component of G′ must be a vertex, an edge, or an odd cycle.)

A further consequence of Theorem 1 is that we can efficiently find a maximum cardinality
stable set in a graph G without totally odd K4-subdivisions. Roughly, α(G) equals then
the optimum of a linear program that can be solved in polynomial time, and by iteratively
removing from G any vertex v such that α(G − v) = α(G) we eventually find a maximum
stable set. We refer the interested reader to [4, 6] for the details.
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Figure 1: A graph G with its critical edges drawn in bold (left), and a critical subgraph of G
(right).

The main step of Sewell and Trotter’s proof of Theorem 1 consists in finding a totally odd
K4-subdivision in the union of three carefully chosen odd cycles, by considering the various
ways in which these odd cycles can intersect. A similar but more compact proof was given by
Schrijver [4, pp. 1196—1199].

The purpose of this note is to present a new and simpler proof of Sewell and Trotter’s
result. Our proof relies on the following two ideas. First, we prove a strengthened version of
Theorem 1. Second, we use the extra strength of the new statement to obtain a contradiction,
essentially, by operating few local modifications on a minimum counter-example.

Theorem 2. Let G be a connected α-critical graph that is not isomorphic to K1,K2, an odd
cycle, nor to a totally odd K4-subdivision. Then

• G contains a totally odd K4-subdivision, and, moreover,

• if {x1, x2, x3} ⊆ V (G) induces a triangle, then at least two of the three subgraphs G−xi

contain a totally odd K4-subdivision.

2 The Proof

The following lemma summarizes some basic properties of α-critical graphs which we will
need; see for instance Lovász [2] or Lovász and Plummer [3] for a proof.

Lemma 1. Let G be a connected α-critical graph with |V (G)| ≥ 4. Then every vertex has
degree at least 2. Moreover, if u ∈ V (G) has exactly two neighbors v, w in G, then v and w
are not linked; the only common neighbor of v and w is u; and contracting uv and uw results
in another α-critical graph.

Consider now an arbitrary graph G. The maximum degree of a vertex in G is denoted by
∆(G). We say that an edge e of G is critical if α(G − e) > α(G). Let Ec(G) denote the set
of critical edges of G. We call a subgraph G′ ⊆ G a critical subgraph of G if V (G′) = V (G),
α(G′) = α(G), the graph G′ contains every critical edge of G, and G′ is α-critical (see Figure 1
for an example). Any such subgraph can be obtained from G by iteratively removing some
edge which is non critical in the current subgraph, as long such an edge exists. In particular,
every graph G has a critical subgraph.

Proof of Theorem 2. Let G be a counter-example with |E(G)| minimum. If there exists a
minimum counter-example with a triangle, we assume that G has one. The outline of the proof
is as follows. After gathering some basic facts which will be repeatedly used subsequently, we
split the proof into two cases according to whether G is triangle-free (Case I) or not (Case II).
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In both cases, we first construct a new graph G′ by locally modifying G. We then consider
some critical subgraph H of G′ and choose a component H ′ of H. Then H ′ is a connected
α-critical graph and not a counter-example. So we can apply the theorem to it. Finally we
show that the theorem has to hold for G too, which is a contradiction. In Case I, the new
graph G′ is obtained by rotating some edge around one of its ends in such a way that a triangle
appears. In Case II, the new graph G′ is obtained by adding an edge whose ends are both at
distance 1 from some triangle and then removing the three vertices of the triangle.

Claim 1. Every vertex u of G satisfies degG(u) ≥ 3.

Proof. By Lemma 1, G has no vertex with degree 1. Moreover, if degG(u) = 2 for some
u ∈ V (G), then using the same lemma it follows that u is not in a triangle, and that by
contracting the two edges incident to u we could obtain a smaller counter-example.

For u ∈ V (G), let G−c u := (V (G− u), Ec(G− u)). Notice α(G− u) = α(G), and hence

E(G−c u) = {e ∈ Ec(G) : ∃S ⊆ V (G− u), S is a maximum stable set in G− e}. (1)

Claim 2. Let u ∈ V (G). If ∆(G−c u) ≥ 3, then G−u contains a totally odd K4-subdivision.

Proof. Let H be a critical subgraph of G − u. By definition, G −c u is a spanning subgraph
of H. If ∆(G−c u) ≥ 3, then there is a component H ′ of H with ∆(H ′) ≥ 3. Clearly, every
component of an α-critical graph is also α-critical, thus H ′ is α-critical. Since H ′ is not a
counter-example to Theorem 2, it must contain a totally odd K4-subdivision, and so does
G− u.

Claim 3. Let u ∈ V (G). Any edge of G not incident to u such that one of its ends is adjacent
to u belongs to E(G−c u).

Proof. Let e denote the edge considered. Since G is α-critical, any maximum stable set of
G − e contains both of its ends and hence avoids u. Eq. (1) then implies that e belongs to
E(G−c u).

CASE I. By Claim 2, we have ∆(G−c u) ≤ 2 for all u ∈ V (G). It follows then from Claim 3
that

• G is cubic (3-regular), and

• G has no subgraph isomorphic to K2,3.

The graph G must have two incident edges uw,wv so that the only common neighbor of u
and v is w. Indeed, it is not difficult to check that the unique graph that is connected, cubic,
triangle-free, not containing K2,3 as a subgraph, and where every two incident edges lie in a
common cycle of length 4 is the graph of the cube (on 8 vertices), which is not α-critical. Let
u1, u2 and v1, v2 be the two neighbors of u and v, respectively, that are distinct from w. Let
also z be the neighbor of w outside {u, v}.

By Claim 3, uw ∈ E(G −c v). Since ∆(G −c v) ≤ 2, we have uu1 /∈ E(G −c v) or
uu2 /∈ E(G−c v), say without loss of generality uu2 /∈ E(G−c v). Let G′ := (G− uu2) + uv.
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Using Eq. (1), every maximum stable set of G − uu2 contains v, hence α(G′) = α(G). This
in turn implies

{uv} ∪ E(G−c u) ∪ E(G−c v) ⊆ Ec(G′). (2)

Let H be an arbitrary critical subgraph of G′ and denote by H ′ the component containing
u. Since uw,wz ∈ E(G−c v), vw ∈ E(G−c u), it follows from Eq. (2) that {u, v, w} induces
a triangle in H ′ and wz ∈ E(H ′). Lemma 1 then yields uu1 ∈ E(H ′), and vv1 ∈ E(H ′)
or vv2 ∈ E(H ′), say w.l.o.g. vv1 ∈ E(H ′). Using Claim 3, we have e ∈ E(G −c u) (resp.,
e ∈ E(G−c v)) for every edge e 6= uu1, vv1 which is incident to u1 (resp., v1) in G. Hence, by
Eq. (2), u, u1, v, v1, w have each degree at least 3 in H ′, and in particular H ′ is not isomorphic
to a totally odd K4-subdivision (notice that u1 6= v1 by our choice of u and v).

As |E(H ′)| ≤ |E(G)| and, by hypothesis, no minimum counter-example has a triangle, we
may apply the second part of Theorem 2 on H ′ and triangle {u, v, w}, giving that at least
one of H ′ − u,H ′ − v contains a totally odd K4-subdivision. Since that subdivision cannot
use the edge uv, it also exists in G. This concludes the case where G is triangle-free.

CASE II. Let T = {u, v, w} be a triangle of G such that both G− u and G− v contain no
totally odd K4-subdivision. By Claim 2, this implies ∆(G−c u),∆(G−c v) ≤ 2, which in turn
implies degG(x) = 3 for all x ∈ T , using Claim 3. We will derive a contradiction by showing
that G− u or G− v contains a totally odd K4-subdivision.

Suppose first that two distinct vertices x, y ∈ T have a common neighbor outside T . Then
without loss of generality x ∈ {u, v}, and using degG(x) = 3, for every edge e ∈ E(G) not
incident to x there exists a maximum stable set in G− e avoiding x. By Eq. (1), this implies
G −c x = G − x. Since ∆(G −c x) = 2 and Theorem 2 applies to G − x, the latter graph is
an odd cycle. Now, as x is adjacent in G to three consecutive vertices of this odd cycle, we
deduce that G is a totally odd K4-subdivision, a contradiction. It follows that the neighbors
outside T of u, v and w are pairwise distinct; let us denote them respectively by u′, v′ and w′.

Notice that any maximum stable set in G − uu′ must contain v′ and w′. In particular,
{u′, v′, w′} is a stable set. Let G′ := (G− T ) + u′w′. Using the previous remarks, it is easily
seen that α(G′) = α(G)− 1, which implies

{u′w′} ∪ E((G−c u
′)− T ) ∪ E((G−c w

′)− T ) ⊆ Ec(G′). (3)

Consider a critical subgraph of G′, say H, and denote by H ′ the component including w′.
Since ∆(G−cu) ≤ 2 and ww′ ∈ E(G−cu), the vertex w′ has a neighbor x outside T such that
w′x /∈ E(G−c u). By Eq. (1), this means that every maximum stable set in G−w′x contains
u. Hence, w′x ∈ E((G −c u

′) − T ). Also, using Claim 3, we have e ∈ E((G −c w
′) − T ) for

every edge e ∈ E(G), e 6= w′x which is incident to x.
Now, it follows from Eq. (3) that x has degree at least three in H ′. Since |E(H ′)| < |E(G)|,

by applying Theorem 2 on H ′ we deduce that the latter graph contains a totally odd K4-
subdivision K. We have K ⊂ G− v, unless u′w′ ∈ E(K). In the latter case, by replacing the
edge u′w′ of K with the path u′uww′ we also obtain a totally odd K4-subdivision contained
in G− v. This completes the proof of Theorem 2.

To conclude, we mention that the second part of the statement of Theorem 2 cannot be
strengthened to “the three subgraphs G−xi (i = 1, 2, 3) contain a totally odd K4-subdivision”,
as illustrated by the rightmost graph in Figure 1.
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[1] V. Chvátal. On certain polytopes associated with graphs. J. Combin. Theory Ser. B,
18:138–154, 1975.

[2] L. Lovász. Combinatorial Problems and Exercises. North-Holland Publishing Co., Ams-
terdam, second edition, 1993.

[3] L. Lovász and M. D. Plummer. Matching Theory, volume 121 of North-Holland Math-
ematics Studies. North-Holland Publishing Co., Amsterdam, 1986. Annals of Discrete
Mathematics, 29.

[4] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. B, volume 24 of
Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003. Matroids, trees, stable sets,
Chapters 39–69.

[5] E. C. Sewell and L. E. Trotter, Jr. Stability critical graphs and even subdivisions of K4.
J. Combin. Theory Ser. B, 59:74–84, 1993.

[6] E. C. Sewell and L. E. Trotter, Jr. Stability critical graphs and ranks facets of the stable
set polytope. Discrete Mathematics, 147:247–255, 1995.

5


